1
|
Ishigaki Y, Harimoto T, Shimajiri T, Suzuki T. Carbon-based Biradicals: Structural and Magnetic Switching. Chem Rev 2023; 123:13952-13965. [PMID: 37948658 DOI: 10.1021/acs.chemrev.3c00376] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Sterically hindered C═C double bonds often deform into a bent or twisted geometry. Thus, many overcrowded ethylenes or anthraquinodimethanes can adopt multiple conformations, such as a folded form or a twisted form, which are interconvertible under the application of external stimuli. A perpendicular form with biradical character can also be adopted when designed to incorporate a stable carbon-based radical unit, which is involved in stimuli-responsive magnetic switching accompanied by a structural change. This review focuses on recent advances in the development of such strained π-electron systems and reveals the factors that affect the mutual interconversion and switching behavior. The energy barrier for the interconversion of conformational isomers is affected by the tricyclic skeleton or bulky substituents on the C═C double bonds, whereas the relative stability of the perpendicular biradical form increases with the additional insertion of 9,10-anthrylene units into the C═C double bonds.
Collapse
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takuya Shimajiri
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
2
|
Wang X, Guo S, Niu Z. Synthesis of a ZSM-5 (core)/SAPO-11 (shell) composite zeolite and its catalytic performance in the methylation of naphthalene with methanol. RSC Adv 2023; 13:2081-2089. [PMID: 36712614 PMCID: PMC9833296 DOI: 10.1039/d2ra07499k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
In the present work, a ZSM-5 (core)/SAPO-11 (shell) composite was prepared by the hydrothermal method and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), temperature programmed desorption of ammonia (NH3-TPD), and other characterization techniques. The catalytic performance of ZSM-5/SAPO-11 for the methylation of naphthalene with methanol was also studied. For comparison, the mechanical mixture was prepared through the blending of ZSM-5 and SAPO-11. The experimental results showed ZSM-5/SAPO-11 has been prepared with good crystallization, and exhibited a core-shell structure, with the ZSM-5 phase as the core and the SAPO-11 phase as the shell. The pore size of ZSM-5/SAPO-11 was between that of ZSM-5 and SAPO-11, and it had fewer acid sites than ZSM-5 and the mechanical mixture but more acid sites than SAPO-11. The excellent catalytic performance of ZSM-5/SAPO-11 was due to suitable pore size and acidity. The formation mechanism of the ZSM-5/SAPO-11 composite zeolite was also discussed.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of High Value Utilization of Coal Gangue, Taiyuan University of Science and TechnologyTaiyuanPR China
| | - Shilong Guo
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of High Value Utilization of Coal Gangue, Taiyuan University of Science and TechnologyTaiyuanPR China
| | - Ziyan Niu
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of High Value Utilization of Coal Gangue, Taiyuan University of Science and TechnologyTaiyuanPR China,WuXi AppTec (Tianjin) Co., Ltd.TianjinPR China
| |
Collapse
|
3
|
Ishigaki Y, Asai K, Jacquot de Rouville HP, Shimajiri T, Hu J, Heitz V, Suzuki T. Solid-State Assembly by Chelating Chalcogen Bonding in Quinodimethane Tetraesters Fused with a Chalcogenadiazole. Chempluschem 2022; 87:e202200075. [PMID: 35420722 DOI: 10.1002/cplu.202200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Indexed: 11/09/2022]
Abstract
In contrast to p-quinodimethane tetraesters, which undergo facile polymerization due to their diradical character, newly synthesized 1 and 2 consisting of a chalcogenadiazole fused to a p-naphthoquinodimethane tetraester are thermodynamically stable due to butterfly-shaped deformation. Such a folded molecular structure is also favorable for chalcogen bond (ChB) formation through intermolecular close contacts between a chalcogen atom (E: Se or S) and the oxygen atoms of ester groups in a crystal. The less-explored chelating-ChB through a C=O⋅⋅⋅E⋅⋅⋅O=C contact [Se⋅⋅⋅O: 2.94-3.37 Å] is the key supramolecular synthon for the formation of a one-dimensional rod-like assembly in a crystal, which is commonly observed in selenadiazole-tetraesters (1) with OMe, OEt, and OiPr groups. The formation of inclusion cavities between the rods shows that 1 could serve as solid-state host molecules for clathrate formation, as found in a hexane-solvated crystal. In contrast, thiadiazole-tetraesters (2) are less suitable for the formation of a rod-like assembly since the ChB involving S is less effective, and thus is overwhelmed by weak hydrogen bonds through C-H⋅⋅⋅O contacts.
Collapse
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kota Asai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Henri-Pierre Jacquot de Rouville
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Takuya Shimajiri
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Johnny Hu
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
4
|
Liu Q, Jin B, Li Q, Yang H, Luo Y, Li X. Self-sorting assembly of artificial building blocks. SOFT MATTER 2022; 18:2484-2499. [PMID: 35266949 DOI: 10.1039/d2sm00153e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembly to build high-level structures, which is ubiquitous in living systems, has captured the imagination of scientists, striving to emulate the intricacy, homogeneity and versatility of the naturally occurring systems, and to pursue a similar level of organization in artificial building blocks. In particular, self-sorting assembly in multicomponent systems, based on the spontaneous recognition and consequent spatial aggregation of the same or interactive building units, is able to realize very complicated assembly behaviours, and usually results in multiple well-ordered products or hierarchical structures in a one-step manner. This highly efficient assembly strategy has attracted tremendous research attention in recent years, and numerous examples have been reported in artificial systems, particularly with supramolecular and polymeric building blocks. In the current review, we summarize the progress in recent years, and classify them into five main categories, based on their working mechanisms or principles. With the review of these strategies, we hope to provide not only some deep insights into this field, but also and more importantly, useful thoughts in the design and fabrication of self-sorting systems in the future.
Collapse
Affiliation(s)
- Qianwei Liu
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Bixin Jin
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Qin Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Huanzhi Yang
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Yunjun Luo
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
| | - Xiaoyu Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
- Experimental Centre of Advanced Materials, Beijing Institute of China, Beijing 100081, People's Republic of China
| |
Collapse
|
5
|
Ishigaki Y, Shimomura K, Asai K, Shimajiri T, Akutagawa T, Fukushima T, Suzuki T. Chalcogen Bond versus Halogen Bond: Changing Contributions in Determining the Crystal Packing of Dihalobenzochalcogenadiazoles. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kai Shimomura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kota Asai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takuya Shimajiri
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisiplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
6
|
Fernández Riveras JA, Frontera A, Bauzá A. Selenium chalcogen bonds are involved in protein-carbohydrate recognition: a combined PDB and theoretical study. Phys Chem Chem Phys 2021; 23:17656-17662. [PMID: 34373871 DOI: 10.1039/d1cp01929e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this manuscript the ability of selenium carbohydrates to undergo chalcogen bonding (ChB) interactions with protein residues has been studied at the RI-MP2/def2-TZVP level of theory. An inspection of the Protein Data Bank (PDB) revealed SeA (A = O, C and S) intermolecular contacts involving Se-pyranose ligands and ASP, TYR, SER and MET residues. Theoretical models were built to analyse the strength and directionality of the interaction together with "Atoms in Molecules" (AIM), Natural Bonding Orbital (NBO) and Non Covalent Interactions plot (NCIplot) analyses, which further assisted in the characterization of the ChBs described herein. We expect that the results from this study will be useful to expand the current knowledge regarding biological ChBs as well as to increase the visibility of the interaction among the carbohydrate chemistry community.
Collapse
Affiliation(s)
- Jose A Fernández Riveras
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, Palma (Baleares) 07122, Spain.
| | | | | |
Collapse
|
7
|
Chalcogen S∙∙∙S Bonding in Supramolecular Assemblies of Cadmium(II) Coordination Polymers with Pyridine-Based Ligands. CRYSTALS 2021. [DOI: 10.3390/cryst11060697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two cadmium(II) coordination polymers, with thiocyanate and pyridine-based ligands e.g., 3-acetamidopyridine (3-Acpy) and niazid (nicotinic acid hydrazide, nia), namely one-dimensional {[Cd(SCN)2(3-Acpy)]}n (1) and two-dimensional {[Cd(SCN)2(nia)]}n (2), are prepared in the mixture of water and ethanol. The adjacent cadmium(II) ions in 1 are bridged by two N,S-thiocyanate ions and an N,O-bridging 3-Acpy molecule, forming infinite one-dimensional polymeric chains, which are assembled by the intermolecular N–H∙∙∙S hydrogen bonds in one direction and by the intermolecular S∙∙∙S chalcogen bonds in another direction. Within the coordination network of 2, the adjacent cadmium(II) ions are bridged by N,S-thiocyanate ions in one direction and by N,O,N’-chelating and bridging nia molecules in another direction. The coordination networks of 2 are assembled by the intermolecular N–H∙∙∙S and N–H∙∙∙N hydrogen bonds and S∙∙∙S chalcogen bonds. Being the only supramolecular interactions responsible for assembling the polymer chains of 1 in the particular direction, the chalcogen S∙∙∙S bonds are more significant in the structure of 1, whilst the chalcogen S∙∙∙S bonds which act in cooperation with the N–H∙∙∙S and N–H∙∙∙N hydrogen bonds are of less significance in the structure of 2.
Collapse
|
8
|
Ishigaki Y, Asai K, Shimajiri T, Suzuki T. [1,2,5]Chalcogenadiazole-fused Dicyanonaphthoquinodiimines: Larger Contribution from Chalcogen Bond than Weak Hydrogen Bond in Determining Crystal Structures. CHEM LETT 2021. [DOI: 10.1246/cl.210095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10, W8, North-ward, Sapporo, Hokkaido 060-0810, Japan
| | - Kota Asai
- Department of Chemistry, Faculty of Science, Hokkaido University, N10, W8, North-ward, Sapporo, Hokkaido 060-0810, Japan
| | - Takuya Shimajiri
- Department of Chemistry, Faculty of Science, Hokkaido University, N10, W8, North-ward, Sapporo, Hokkaido 060-0810, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10, W8, North-ward, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|