1
|
Killi N, Rumpke K, Kuckling D. Synthesis of Curcumin Derivatives via Knoevenagel Reaction Within a Continuously Driven Microfluidic Reactor Using Polymeric Networks Containing Piperidine as a Catalyst. Gels 2025; 11:278. [PMID: 40277714 PMCID: PMC12026977 DOI: 10.3390/gels11040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
The use of organo-catalysis in continuous-flow reactor systems is gaining attention in medicinal chemistry due to its cost-effectiveness and reduced chemical waste. In this study, bioactive curcumin (CUM) derivatives were synthesized in a continuously operated microfluidic reactor (MFR), using piperidine-based polymeric networks as catalysts. Piperidine methacrylate and piperidine acrylate were synthesized and subsequently copolymerized with complementary monomers (MMA or DMAA) and crosslinkers (EGDMA or MBAM) via photopolymerization, yielding different polymeric networks. Initially, batch reactions were optimized for the organo-catalytic Knoevenagel condensation between CUM and 4-nitrobenzaldehyde, under various conditions, in the presence of polymer networks. Conversion was assessed using offline 1H NMR spectroscopy, revealing an increase in conversion with enhanced swelling properties of the polymer networks, which facilitated greater accessibility of catalytic sites. In continuous-flow MFR experiments, optimized polymer gel dots exhibited superior catalytic performance, achieving a conversion of up to 72%, compared to other compositions. This improvement was attributed to the enhanced swelling in the reaction mixture (DMSO/methanol, 7:3 v/v) at 40 °C over 72 h. Furthermore, the MFR system enabled the efficient synthesis of a series of CUM derivatives, demonstrating significantly higher conversion rates than traditional batch reactions. Notably, while batch reactions required 90% catalyst loading in the gel, the MFR system achieved a comparable or superior performance with only 50% catalyst, resulting in a higher turnover number. These findings underscore the advantages of continuous-flow organo-catalysis in enhancing catalytic efficiency and sustainability in organic synthesis.
Collapse
Affiliation(s)
| | | | - Dirk Kuckling
- Department of Chemistry, Faculty of Science, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (N.K.); (K.R.)
| |
Collapse
|
2
|
Lin F, Tang R, Liu S, Tan Y. Recent advances in the synthetic applications of nitrosoarene chemistry. Org Biomol Chem 2025; 23:1253-1291. [PMID: 39692149 DOI: 10.1039/d4ob01654h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Nitroso groups are widely present in biologically active compounds in medicinal chemistry, and nitroso compounds serve as important building blocks in organic chemistry and materials science. Nitrosoarenes, in particular, showcase remarkable versatility, functioning as both electrophilic and nucleophilic reagents in a broad spectrum of organic reactions, thereby holding significant relevance in organic chemistry. This review aims to provide a comprehensive overview of the latest advancements in nitrosoarene reactions spanning a decade. Special attention is given to the synthesis of products derived from nitrosoarenes and the conditions that promote these reactions, as well as the type of catalysts. The exploration covers various facets of nitrosoarene chemistry, including cyclization, reactions involving attacks at the oxygen or nitrogen terminus, dimerization, rearrangement, coordination, and other significant reactions. By delving into these diverse reaction pathways and mechanisms, this review aspires to serve as a valuable resource for researchers seeking to deepen their understanding of nitrosoarene chemistry and its applications in both fundamental and applied scientific research.
Collapse
Affiliation(s)
- Feng Lin
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Rongzhi Tang
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Sheng Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong, China
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
3
|
Hasani M, Kalhor HR. A Dual CQD-Catalysis and H-Bond Acceptor for Controlling Product Selectivity and Regioselectivity in Symmetric/Unsymmetric Azoxy Arenes. J Org Chem 2024; 89:13836-13846. [PMID: 39319746 DOI: 10.1021/acs.joc.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Azoxy arenes are valuable compounds in different areas of chemistry, such as organic chemistry, medicinal chemistry, and natural product chemistry. Despite their value, the regioselective synthesis of unsymmetric azoxybenzenes has remained a real challenge in the field. Herein, the product selectivity in oxidative homocoupling of anilines into symmetric azoxybenzenes was first achieved by an asparagine-functionalized CQD catalyst. Subsequently, in the cross-coupling of anilines into the unsymmetric azoxybenzenes via an ortho H-bond acceptor (HBA) on one of the coupling anilines, the regioselectivity was effectively controlled. It was demonstrated that ortho-HBA could mechanistically establish a six-membered intramolecular hydrogen-bonded ring on an N,N'-dihydroxy intermediate. The formed hydrogen bond makes the nearby nitrogen eminently suitable for the slow dehydration step. As a result, the functional oxygen of the azoxy compound is placed far from the HBA. The o-HBA mechanism also controls the regioselectivity ratio in which 1:0 (with an intramolecular H-bonded hexagonal ring), 2:1 (with an intramolecular H-bonded pentagonal ring), and 1:1 (without an ortho-HBA) isomeric mixtures could be achieved. The HBA mechanism was exploited by different substituted anilines, and various unsymmetric azoxybenzenes were synthesized. Finally, with the aid of mechanistic studies, a plausible mechanism for the reaction was proposed.
Collapse
Affiliation(s)
- Morteza Hasani
- Biochemistry and Chemical Biology Research Laboratory, Chemistry Department, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Hamid R Kalhor
- Biochemistry and Chemical Biology Research Laboratory, Chemistry Department, Sharif University of Technology, Tehran 11365-11155, Iran
| |
Collapse
|
4
|
Karakaya I, Mart M, Altundas R. Sustainable and Environmentally Friendly Approach for the Synthesis of Azoxybenzenes from the Reductive Dimerization of Nitrosobenzenes and the Oxidation of Anilines. ACS OMEGA 2024; 9:11494-11499. [PMID: 38496929 PMCID: PMC10938426 DOI: 10.1021/acsomega.3c08328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
This study demonstrates a comparative synthesis of azoxybenzenes through the reductive dimerization of nitrosobenzenes and the oxidation of anilines. Utilizing the cost-effective DIPEA catalyst at room temperature with water as a green solvent, the one-pot procedure involves in situ generation of nitrosobenzene derivatives from anilines in the presence of oxone, followed by DIPEA addition. Both methods yield azoxybenzenes with high selectivity, showcasing the versatility of DIPEA in facilitating the synthesis of azoxybenzenes with various substituents in ortho, meta, and para positions, encompassing electron-donating and electron-withdrawing groups. The use of DIPEA proves pivotal in achieving moderate to high yields, emphasizing its significance in this environmentally friendly synthesis.
Collapse
Affiliation(s)
- Idris Karakaya
- Department of Chemistry,
College of Basic Sciences, Gebze Technical
University, 41400 Gebze, Turkey
| | - Mehmet Mart
- Department of Chemistry,
College of Basic Sciences, Gebze Technical
University, 41400 Gebze, Turkey
| | - Ramazan Altundas
- Department of Chemistry,
College of Basic Sciences, Gebze Technical
University, 41400 Gebze, Turkey
| |
Collapse
|
5
|
Yaghoubian A, Hodgson GK, Adler MJ, Impellizzeri S. Direct photochemical route to azoxybenzenes via nitroarene homocoupling. Org Biomol Chem 2022; 20:7332-7337. [PMID: 36073118 DOI: 10.1039/d2ob01247b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on a direct photochemical method for the one-pot, catalyst- and additive-free synthesis of azoxybenzene and substituted azoxy derivatives from nitrobenzene building blocks. This reaction is conducted at room temperature and under air, and can be applied to substrates with a wide range of substituents. Yields of products derived from para- and meta-substituted nitrobenzenes are typically good, while sterically encumbered ortho-substituted substrates are not as fruitful. Photochemical Wallach rearrangement of generated azoxybenzenes to ortho-hydroxyazoxybenzenes was observed in some cases, most markedly in selected ortho-halogenated nitrobenzenes. Overall, this method provides an efficient, green pathway to highly value-added azoxybenzene products.
Collapse
Affiliation(s)
- Ali Yaghoubian
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada.
| | - Gregory K Hodgson
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada.
| | - Marc J Adler
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada.
| | - Stefania Impellizzeri
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada.
| |
Collapse
|
6
|
Ding B, Xu B, Ding Z, Zhang T, Wang Y, Qiu H, He J, An P, Yao Y, Hou Z. Catalytic selective oxidation of aromatic amines to azoxy derivatives with an ultralow loading of peroxoniobate salts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01137a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tartaric acid-coordinated peroxoniobate salts demonstrate an exceptionally high TOF value (up to 4435 h−1) even at an ultralow catalyst loading for the oxidation of aromatic amines to azoxy compounds under green and very mild conditions.
Collapse
Affiliation(s)
- Bingjie Ding
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Beibei Xu
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Zuoji Ding
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tong Zhang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yajun Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hewen Qiu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingjing He
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengfei An
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility (BSRF), Beijing 100049, China
| | - Yefeng Yao
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, School of Chemistry and Molecular Engineering, Shanghai 200062, China
| |
Collapse
|
7
|
Direct Asymmetric Aldol Reaction in Continuous Flow Using Gel‐Bound Organocatalysts. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|