1
|
Grunwald MA, Hagenlocher SE, Turkanovic L, Bauch SM, Wachsmann SB, Altevogt LA, Ebert M, Knöller JA, Raab AR, Schulz F, Kolmangadi MA, Zens A, Huber P, Schönhals A, Bilitiewski U, Laschat S. Does thermotropic liquid crystalline self-assembly control biological activity in amphiphilic amino acids? - tyrosine ILCs as a case study. Phys Chem Chem Phys 2023. [PMID: 37366119 DOI: 10.1039/d3cp00485f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Amphiphilic amino acids represent promising scaffolds for biologically active soft matter. In order to understand the bulk self-assembly of amphiphilic amino acids into thermotropic liquid crystalline phases and their biological properties a series of tyrosine ionic liquid crystals (ILCs) was synthesized, carrying a benzoate unit with 0-3 alkoxy chains at the tyrosine unit and a cationic guanidinium head group. Investigation of the mesomorphic properties by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (WAXS, SAXS) revealed smectic A bilayers (SmAd) for ILCs with 4-alkoxy- and 3,4-dialkoxybenzoates, whereas ILCs with 3,4,5-trisalkoxybenzoates showed hexagonal columnar mesophases (Colh), while different counterions had only a minor influence. Dielectric measurements revealed a slightly higher dipole moment of non-mesomorphic tyrosine-benzoates as compared to their mesomorphic counterparts. The absence of lipophilic side chains on the benzoate unit was important for the biological activity. Thus, non-mesomorphic tyrosine benzoates and crown ether benzoates devoid of additional side chains at the benzoate unit displayed the highest cytotoxicities (against L929 mouse fibroblast cell line) and antimicrobial activity (against Escherichia coli ΔTolC and Staphylococcus aureus) and promising selectivity ratio in favour of antimicrobial activity.
Collapse
Affiliation(s)
- Marco André Grunwald
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Selina Emilie Hagenlocher
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Larissa Turkanovic
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Soeren Magnus Bauch
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | | | - Luca Alexa Altevogt
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Max Ebert
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Julius Agamemnon Knöller
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Aileen Rebecca Raab
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Finn Schulz
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | | | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Patrick Huber
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, D-21073 Hamburg, Germany
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, D-22605 Hamburg, Germany
- Centre for Hybrid Nanostructures ChyN, University Hamburg, D-21073 Hamburg, Germany.
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und-prüfung (BAM), D-12205 Berlin, Germany.
| | - Ursula Bilitiewski
- AG Compound Profiling and Screening, Helmholtz Zentrum für Infektionsforschung, Inhoffenstr. 7, D-38124 Braunschweig, Germany.
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| |
Collapse
|