1
|
Deng Q, Lin T, Liu X, Shao H, Lv X, Wu X, Xiong F, Li W. A novel acenaphthoimidazolyidene oxazolinic palladium complex and its efficient catalysis in Suzuki-Miyaura cross-coupling reactions of N-acyl-glutarimides via N-C cleavage. Org Biomol Chem 2025; 23:4063-4068. [PMID: 40190186 DOI: 10.1039/d5ob00279f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Herein, we synthesized a new Pd-N-heterocyclic carbene (Pd-NHC) complex that featured an acenaphthoimidazolylidene (AnIm) skeleton and 2-phenyl-2-oxazoline. This catalyst exhibited extremely high efficiency in Suzuki-Miyaura couplings between N-acyl-glutarimides and organoboronic acids, affording various aryl ketones in excellent yields with a broad substrate scope and wide functional group compatibility. Notably, the reactions were completed in just 5 hours with only 0.5 mol% of catalyst. In addition, this catalytic system also enables the efficient synthesis of functional molecular intermediates. The catalyst, designed through the synergistic integration of a throw-away ligand and an extended conjugated NHC system, further demonstrates its remarkable potential.
Collapse
Affiliation(s)
- Qinyue Deng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, P. R. China.
| | - Tenglong Lin
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, P. R. China.
| | - Xiaohu Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, P. R. China.
| | - Han Shao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, P. R. China.
| | - Xiaojun Lv
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, P. R. China.
| | - Xiaoting Wu
- Central Analytical Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fei Xiong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, P. R. China.
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, P. R. China.
| |
Collapse
|
2
|
Barbor JP, Flesch KN, Chan M, Ang HR, Stoltz BM. Enantioselective Spirocyclization of Pd-Enolates and Isocyanates. Angew Chem Int Ed Engl 2025:e202502583. [PMID: 40148236 DOI: 10.1002/anie.202502583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 03/29/2025]
Abstract
An enantioselective cyclization of Pd-enolates and isocyanates to form spirocyclic γ-lactams is reported. This reaction proceeds under mild reaction conditions and utilizes a novel Meldrum's acid derivative to achieve catalyst turnover, delivering enantioenriched products in up to 97% yield and 96% ee. Preliminary mechanistic investigations suggest that the reaction may proceed via the formation of higher-order species.
Collapse
Affiliation(s)
- Jay P Barbor
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA, 91125, USA
| | - Kaylin N Flesch
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA, 91125, USA
| | - Melinda Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA, 91125, USA
| | - Hannah R Ang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA, 91125, USA
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA, 91125, USA
| |
Collapse
|
3
|
Hussain Padder A, Ghora B, Hussain F, Bhat MY, Ahmed QN. BF 3·Et 2O-promoted unconventional reactions of 2-oxoaldehyde: access to 4-amidooxazoles and β-keto amides/sulphonamides. Org Biomol Chem 2025; 23:1809-1813. [PMID: 39807067 DOI: 10.1039/d4ob01956c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study investigates the potential of boron trifluoride etherate (BF3·OEt2) to trigger unprecedented reactions of 2-oxoaldehydes with nitriles and amides/sulphonamides. In contrast to the mechanism in conventional reactions, the α-carbonyl group in 2-oxoaldehydes induces a cyclization pathway to be followed when reacting with nitriles, yielding 4-amidooxazoles. Additionally, reactions with weak nucleophiles produce β-keto amides/sulphonamides. BF3·OEt2 catalysis offers a novel, efficient, and operationally simple synthetic route to these valuable compounds, showcasing the versatility of boron Lewis acids in organic transformations.
Collapse
Affiliation(s)
- Ashiq Hussain Padder
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Bhawna Ghora
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Feroze Hussain
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Mohammad Yaqoob Bhat
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| |
Collapse
|
4
|
Sead FF, Jain V, Ballal S, Singh A, Devi A, Chandra Sharma G, Joshi KK, Kazemi M, Javahershenas R. Research on transition metals for the multicomponent synthesis of benzo-fused γ-lactams. RSC Adv 2025; 15:2334-2346. [PMID: 39867320 PMCID: PMC11756498 DOI: 10.1039/d4ra08798d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
Benzo-fused γ-lactams are fundamental in medicinal chemistry, acting as essential elements for various therapeutic agents due to their structural adaptability and capability to enhance biological activity. In their synthesis, transition metals play a pivotal role as catalysts, offering more efficient alternatives to traditional methods by facilitating C-N bond formation through mechanisms like intramolecular coupling. Recent advances have especially spotlighted transition-metal-catalyzed C-H amination reactions for directly converting C(sp2)-H to C(sp2)-N bonds, streamlining the creation of these compounds. Furthermore, biocatalytic approaches have emerged, providing asymmetric synthesis of lactams with high yield and enantioselectivity. This review examined the transition metal-catalyzed synthesis techniques for producing benzo-fused γ-lactams, marking a significant leap in organic synthesis by proposing more effective, selective, and greener production methods. It serves as a valuable resource for researchers in the fields of transition metal catalysts and those engaged in synthesizing these lactams.
Collapse
Affiliation(s)
- Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University Najaf Iraq
- Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah Al Diwaniyah Iraq
- Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon Babylon Iraq
| | - Vicky Jain
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University Rajkot-360003 Gujarat India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura Punjab 140401 India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri Mohali140307 Punjab India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan Jaipur India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University Dehradun India
- Graphic Era Deemed to be (b) University Dehradun Uttarakhand India
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Tehran Branch, Islamic Azad University Tehran Iran
| | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry Urmia University Urmia Iran
| |
Collapse
|
5
|
Porte V, Nascimento VR, Sirvent A, Tiefenbrunner I, Feng M, Kaiser D, Maulide N. Asymmetric Synthesis of β-Ketoamides by Sulfonium Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202418070. [PMID: 39440410 PMCID: PMC11627135 DOI: 10.1002/anie.202418070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The synthesis of enantioenriched α-substituted 1,3-dicarbonyls remains a contemporary challenge in synthesis due to their tendency to undergo racemization via keto-enol tautomerization. Herein, we report a method to access enantioenriched β-ketoamides by a chiral sulfinimine-mediated [3,3]-sigmatropic sulfonium rearrangement. The transformation displays good chirality transfer, as well as excellent chemoselectivity and functional group tolerance. Diastereoselective reduction of the ketone moiety, also achievable in one-pot fashion, affords enantioenriched β-hydroxyamides.
Collapse
Affiliation(s)
- Vincent Porte
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | | | - Ana Sirvent
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Irmgard Tiefenbrunner
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Minghao Feng
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Daniel Kaiser
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Nuno Maulide
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| |
Collapse
|
6
|
Yan W, Hong Q, Li Y, Zou J, Wang G, He ZL. Spiroannulations of β-Ketothioamides with Bromoenals via Selective C-Michael Addition and S-Michael Addition-Triggered Cascade Reactions. J Org Chem 2024; 89:14908-14918. [PMID: 39344782 DOI: 10.1021/acs.joc.4c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
A spiroannulation reaction of β-ketothioamides with aromatic β-bromoenals and aromatic α-bromoenals via selective C-Michael addition and S-Michael addition-triggered cascade reactions has been developed. This protocol provides a novel and rapid approach for the synthesis of substituted spirothiopyran and spirothiophene derivatives under mild conditions with moderate to good yields and a broad substrate scope.
Collapse
Affiliation(s)
- Wanyu Yan
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| | - Qian Hong
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| | - Yi Li
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| | - Jing Zou
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| | - Gang Wang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| | - Zhao-Lin He
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| |
Collapse
|
7
|
Na TU, Sander V, Davidson AJ, Lin R, Hermant YO, Hardie Boys MT, Pletzer D, Campbell G, Ferguson SA, Cook GM, Allison JR, Brimble MA, Northrop BH, Cameron AJ. Allenamides as a Powerful Tool to Incorporate Diversity: Thia-Michael Lipidation of Semisynthetic Peptides and Access to β-Keto Amides. Angew Chem Int Ed Engl 2024; 63:e202407764. [PMID: 38932510 DOI: 10.1002/anie.202407764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are an important class of biomolecules for drug development. Compared with conventional acylation, a chemoselective lipidation strategy offers a more efficient strategy for late-stage structural derivatisation of a peptide scaffold. It provides access to chemically diverse compounds possessing intriguing and non-native moieties. Utilising an allenamide, we report the first semisynthesis of antimicrobial lipopeptides leveraging a highly efficient thia-Michael addition of chemically diverse lipophilic thiols. Using chemoenzymatically prepared polymyxin B nonapeptide (PMBN) as a model scaffold, an optimised allenamide-mediated thia-Michael addition effected rapid and near quantitative lipidation, affording vinyl sulfide-linked lipopeptide derivatives. Harnessing the utility of this new methodology, 22 lipophilic thiols of unprecedented chemical diversity were introduced to the PMBN framework. These included alkyl thiols, substituted aromatic thiols, heterocyclic thiols and those bearing additional functional groups (e.g., amines), ultimately yielding analogues with potent Gram-negative antimicrobial activity and substantially attenuated nephrotoxicity. Furthermore, we report facile routes to transform the allenamide into a β-keto amide on unprotected peptides, offering a powerful "jack-of-all-trades" synthetic intermediate to enable further peptide modification.
Collapse
Affiliation(s)
- Tae-Ung Na
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Veronika Sander
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Alan J Davidson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Rolland Lin
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Madeleine T Hardie Boys
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Daniel Pletzer
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Georgia Campbell
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Scott A Ferguson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Gregory M Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Jane R Allison
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Brian H Northrop
- Department of Chemistry, Wesleyan University, 52 Lawn Ave., Middletown, CT 06459, U.S.A
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
8
|
Cassels WR, Sherman ER, Longmore KA, Johnson JS. Switchable Enantio- and Diastereoselective Michael Additions of β-Keto Amides to Nitroolefins: Crystallization-Based Inversion of Kinetic Stereocontrol. Org Lett 2024; 26:7176-7180. [PMID: 39151143 PMCID: PMC11420994 DOI: 10.1021/acs.orglett.4c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Asymmetric catalytic reactions rely on chiral catalysts that induce highly ordered transition states capable of imparting stereoselectivity in the bond-forming step(s). Productive deviations from this paradigm are rare yet hold the potential for accessing different stereoisomers using the same catalyst. Here, we present an enantio- and diastereoselective Michael addition of β-keto amides to nitroolefin electrophiles proceeding via an unusual scenario where the kinetic diastereocontrol imparted by the catalyst may be overridden by crystallization to provide the complementary stereoisomer of the product.
Collapse
Affiliation(s)
- William R. Cassels
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Emily R. Sherman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Kaylah A. Longmore
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jeffrey S. Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
9
|
Morita T, Makino K, Tsuda M, Nakamura H. Chemoselective α-Trifluoroacetylation of Amides Using Highly Electrophilic Trifluoroacetic Anhydrides and 2,4,6-Collidine. Org Lett 2023. [PMID: 38047626 DOI: 10.1021/acs.orglett.3c03719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Chemoselective α-acylation of tertiary amides proceeded with highly electrophilic acid anhydrides and weak bases under mild conditions. β-Ketoamides containing trifluoroacetyl or perfluoroacyl groups were selectively obtained even in the presence of other functional groups such as ketone, ester, etc. Density functional theory calculations suggest that 1-acyloxyenamine is the key intermediate for the chemoselective α-acylation.
Collapse
Affiliation(s)
- Taiki Morita
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Kentaro Makino
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Masato Tsuda
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
10
|
Hayamizu K, Koike K, Dodo K, Asanuma M, Egami H, Sodeoka M. Simple purification of small-molecule-labelled peptides via palladium enolate formation from β-ketoamide tags. Chem Sci 2023; 14:8249-8254. [PMID: 37564408 PMCID: PMC10411859 DOI: 10.1039/d2sc03112d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/04/2023] [Indexed: 08/12/2023] Open
Abstract
Palladium enolates derived from β-ketocarbonyl compounds serve as key intermediates in various catalytic asymmetric reactions. We found that the palladium enolate formed from β-ketoamide is stable in air and moisture and we applied this property to develop a peptide purification system using β-ketoamide as a small affinity tag in aqueous media. A solid-supported palladium complex successfully captured β-ketoamide-tagged molecules as palladium enolates and released them in high yield upon acid treatment. Optimum conditions for the catch and release of tagged peptides from a mixture of untagged peptides were established. To demonstrate the value of this methodology in identifying the binding site of a ligand to its target protein, we purified and identified a peptide containing the ligand-binding site from the tryptic digest of cathepsin B labelled with a covalent cathepsin B inhibitor containing a β-ketoamide tag.
Collapse
Affiliation(s)
- Kenji Hayamizu
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kota Koike
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa Wako Saitama 351-0198 Japan
| | - Kosuke Dodo
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa Wako Saitama 351-0198 Japan
| | - Miwako Asanuma
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa Wako Saitama 351-0198 Japan
| | - Hiromichi Egami
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
- RIKEN Center for Sustainable Resource Science 2-1, Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
11
|
Marinova P, Nikolova S, Tsoneva S. Synthesis of N-[1-(2-Acetyl-4,5-dimethoxyphenyl)propan-2-yl]benzamide and Its Copper(II) Complex. RUSS J GEN CHEM+ 2023; 93:161-165. [PMID: 36919098 PMCID: PMC9997427 DOI: 10.1134/s1070363223010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/14/2022] [Accepted: 11/19/2022] [Indexed: 03/16/2023]
Abstract
This paper represents a convenient method for the synthesis of N-[1-(2-acetyl-4,5-dimethoxyphenyl)propan-2-yl]benzamide and its Cu(II) complex. In silico analysis predicted spasmolytic activity for the compound. Based on the in silico calculations, the importance of the predicted ketoamide, and our previous experiments, we synthesized the ketoamide via ortho-acylation of N-[1-(3,4-dimethoxyphenyl)propan-2-yl]benzamide with acetic anhydride in polyphosphoric acid. We applied the title ketoamide in reaction with Cu(II) varying the solvents. We found that the reaction leads to the formation of a coordination compound when the ligand dissolved in DMSO reacts with a water solution of CuCl2 in an alkaline environment in a molar ratio M : L : OH- = 1 : 2 : 2. The structures of the new compounds are discussed based on their melting points, IR, 1H, 13C NMR and Raman spectral data.
Collapse
Affiliation(s)
- P Marinova
- Department of General and Inorganic Chemistry with Methodology of Chemistry Education, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - S Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - S Tsoneva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
12
|
Rapid access to pyrrolo[3,4-c]quinoline-1,3-diones: An improved synthetic protocol using a precursor prepared by pfitzinger reaction. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Oznobikhina LP, Lazarev IM, Lazareva NF. Experimental and Theoretical Investigation of the Structure of Acetoacetanilide. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Synthesis and Characterization of a Calcium‐Pyrazolonato Complex. Observation of
In‐Situ
Desolvation During Micro‐Electron Diffraction. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Singh S, Kandasamy J. Synthesis of 1,3‐dicarbonyl compounds using N‐Cbz amides as an acyl source under transition metal‐free conditions at room temperature. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shweta Singh
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
16
|
Wu X, Li W. The Applications of
β
‐Keto
Amides for Heterocycle Synthesis. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoqiang Wu
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai P. R. China
| | - Wanfang Li
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai P. R. China
| |
Collapse
|