1
|
Kong Y, Gong M, Xu X, Wu Y, Jiang X. An efficient direct electrolysis method for the synthesis of 1,1,1,3,3,3-hexafluoroisopropyxy substituted imidazo[1,2- a]pyridines. Org Biomol Chem 2025; 23:2190-2194. [PMID: 39869101 DOI: 10.1039/d4ob02073a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Electrochemical oxidative cross-dehydrogenative-coupling (CDC) is an ideal strategy to conduct the C3-alkoxylation of imidazo[1,2-a]pyridine, but it remains a challenge owing to limitation imposed by the use of alkyl alcohols and carboxylic acids. Herein, we report a mild and efficient 2-electrode constant-potential electrolysis of imidazo[1,2-a]pyridine with hexafluoroisopropanol (HFIP) to produce various imidazo[1,2-a]pyridine HFIP ethers. Mechanistic studies indicated that the electrooxidation reaction might involve radical coupling and ionic reaction.
Collapse
Affiliation(s)
- Yanyan Kong
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, College of Chemistry, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Ming Gong
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, College of Chemistry, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Xuemei Xu
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, College of Chemistry, Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Xingmao Jiang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P.R. China.
| |
Collapse
|
2
|
Tali JA, Kumar G, Sharma BK, Rasool Y, Sharma Y, Shankar R. Synthesis and site selective C-H functionalization of imidazo-[1,2- a]pyridines. Org Biomol Chem 2023; 21:7267-7289. [PMID: 37655687 DOI: 10.1039/d3ob00849e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidazo[1,2-a]pyridine has attracted much interest in drug development because of its potent medicinal properties, therefore the discovery of novel methods for its synthesis and functionalization continues to be an exciting area of research. Although transition metal catalysis has fuelled the most significant developments, extremely beneficial metal-free approaches have also been identified. Even though pertinent reviews focused on imidazo[1,2-a]pyridine synthesis, properties (physicochemical and medicinal), and functionalization at the C3 position have been published, none of these reviews has focused on the outcomes obtained in the field of global ring functionalization. We wish here to describe a brief synthesis and an overview of all the functionalization reactions at each carbon atom, viz, C2, C3, C5, C6, C7 and C8 of this scaffold, divided into sections based on site-selectivity and the type of functionalization methods used.
Collapse
Affiliation(s)
- Javeed Ahmad Tali
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gulshan Kumar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bhupesh Kumar Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Younis Rasool
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yashika Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Ravi Shankar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Sanghavi KN, Kapadiya KM, Sriram D, Kumari J. Regioselective Pd-Catalyzed Suzuki–Miyaura Borylation Reaction for the Dimerization Product of 6-Bromoimidazo[1,2-a]pyridine-2-carboxylate: Mechanistic Pathway, Cytotoxic and Tubercular Studies. Synlett 2023. [DOI: 10.1055/s-0042-1751404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AbstractIn the pharmaceutical industry, boronic acid and esters play an important role in API-based synthesis. The most efficient way of preparing various active agents is palladium-catalyzed Suzuki–Miyaura borylation reactions. Herein, we report the formation of dimerization product [6,6′-biimidazo[1,2-a]pyridine]-2,2′-dicarboxamide derivatives 7a–j from 6-bromoimidazo[1,2-a]pyridine-2-carboxylate by employing the same conditions. A regioselective borylation of ethyl 6-bromoimidazo[1,2-a]pyridine-2-carboxylate (3) was examined for the formation of ethyl 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)imidazo[1,2-a]pyridine-2-carboxylate (4a) but it was found to be directed towards the dimerization product 5. The nitrogen-rich system was incorporated into potential anti-cancer and anti-TB agents through acid amine coupling reactions between acid 6 and various amines (dialkyl/cyclic sec./tert.) to form the final adducts 7. Five derived scaffolds were identified as moderately active in TB activity against the H37Rv strain, while two compounds were found to be particularly potent in NCI-60 anti-cancer screening in nine cancer panels.
Collapse
Affiliation(s)
| | | | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani
| | - Jyothi Kumari
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani
| |
Collapse
|
4
|
Zhang J, Wang T, Qian J, Zhang Y, Zhang J. Ultrasound-promoted three-component halogenation-azaheteroarylation of alkenes involving carbon-halogen and carbon-carbon bond formation. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Tran C, Hamze A. Recent Developments in the Photochemical Synthesis of Functionalized Imidazopyridines. Molecules 2022; 27:molecules27113461. [PMID: 35684399 PMCID: PMC9182178 DOI: 10.3390/molecules27113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Imidazopyridines constitute one of the most important scaffolds in medicinal chemistry, as their skeleton could be found in a myriad of biologically active molecules. Although numerous strategies were elaborated for imidazopyridine preparation in the 2010s, novel eco-compatible synthetic approaches have emerged, conscious of climate change concerns. In this framework, photochemical methods have been promoted to conceive this heterocyclic motif over the last decade. This review covers the recently published works on synthesizing highly functionalized imidazopyridines by light induction.
Collapse
|
6
|
Li H, Zhu Y, Jiang C, Wei J, Liu P, Sun P. HOAc catalyzed three-component reaction for the synthesis of 3,3'-(arylmethylene)bis(1 H-indoles). Org Biomol Chem 2022; 20:3365-3374. [PMID: 35355039 DOI: 10.1039/d2ob00395c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient HOAc catalyzed three-component reaction of 2-(arylethynyl)anilines with arylaldehydes has been achieved, which leads to the generation of 3,3'-(arylmethylene)bis(1H-indoles) with good to excellent yields and high regioselectivity under transition-metal-free conditions. Four new C-C and C-N bonds were effectively formed in a one-pot procedure. Subsequent research on the reaction mechanism indicated that the reaction likely involved the processes of intramolecular cyclization and cascade intermolecular dehydration condensation.
Collapse
Affiliation(s)
- Heng Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Yan Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Cong Jiang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Jia Wei
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
7
|
Sanghavi KN, Dhuda GK, Kapadiya KM. Facile Microwave Synthesis of Pd-Catalyzed Suzuki Reaction for Bis-6-Aryl Imidazo[1,2- a]Pyridine-2-Carboxamide Derivatives with PEG3 Linker. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2048035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kartik N. Sanghavi
- Department of Chemistry, School of Science, RK University, Rajkot, Gujarat, India
| | - Gautam Kumar Dhuda
- Department of Chemistry, Maharshi Dayanand Science College, Bhaktakavi Narsinh Mehta University, Porbandar, Gujarat, India
| | - Khushal M. Kapadiya
- Department of Chemistry, School of Science, RK University, Rajkot, Gujarat, India
| |
Collapse
|