1
|
Razuvayeva Y, Kashapov R, Ziganshina A, Salnikov V, Sapunova A, Voloshina A, Zakharova L. Drug Binding and Delivery with Supramolecular System Based on Sodium Carboxymethylcellulose and Viologen Calix[4]resorcinol. Chem Asian J 2024; 19:e202400709. [PMID: 39287008 DOI: 10.1002/asia.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
In the present work, a simple supramolecular approach was used to spontaneously form nanoparticles from sodium carboxymethylcellulose and viologen calix[4]resorcinol as a result of joint self-assembly in water at room temperature. Supramolecular interactions between them led to the formation of nanoparticles, the morphology and properties of which depend on polymer/macrocycle ratio. When there is excess of macrocycle, the nanoparticles bind lipophilic oleic acid, and when there is excess of polymer, they bind hydrophilic doxorubicin. Interestingly, the solubilization of lipophilic quercetin into these nanoparticles was significantly increased compared to the pure polymer and macrocycle, regardless of their ratio. The nanoparticles of triple composition (polymer/macrocycle/drug) have a more effective penetration ability in tumorcells than those of double composition (polymer/drug). The presented results are the first step towards the creation of new nanotechnologies to improve the bioavailability and delivery of bioactive components.
Collapse
Affiliation(s)
- Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russia
| | - Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russia
| | - Albina Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky str., 420111, Kazan, Russia
- Kazan (Volga region) Federal University, 18 Kremlyovskaya str., 420008, Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088, Kazan, Russia
| |
Collapse
|
2
|
Cvetnić M, Cindro N, Bregović N, Tomišić V. Thermodynamics of Anion Binding by (Thio)ureido-calix[4]arene Derivatives in Acetonitrile. ACS PHYSICAL CHEMISTRY AU 2024; 4:773-786. [PMID: 39634652 PMCID: PMC11613299 DOI: 10.1021/acsphyschemau.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 12/07/2024]
Abstract
In this work, we developed (thio)ureido-calix[4]arene derivatives and thoroughly explored their anion-binding properties in acetonitrile. A series of anions, including important inorganic ones (Cl-, HSO4 -, H2PO4 -, and HP2O7 3-) and several ever-present carboxylates (acetate, benzoate, and fumarate), were studied. All systems were investigated by several methods (NMR, ITC, and UV) used in a synergistic fashion, providing their comprehensive thermodynamic description. Acidities of the receptors were determined prior to the anion-binding studies and considered in the data-handling procedures. Complexes of various stoichiometries were detected and the driving force for their formation elucidated. The correlation of the anion structural features and H-bond acceptor properties with the stoichiometries and complexation thermodynamics parameters was rationalized. Generally, stability of the complexes followed the trend defined by the basicity of anions. Thiourea and urea analogues exhibited similar affinities for anion binding except for the H2PO4 - and HP2O7 3-, which interacted with the thiourea analogue more strongly. The hosts endowed with 4 (thio)urea groups formed species containing two receptor molecules bridged by a fumarate or hydrogen pyrophosphate anion. Thermodynamic information provided in this work is applicable in further design of supramolecular systems, whereas the presented approach to data handling will aid researchers when dealing with multiple coexisting equilibria.
Collapse
Affiliation(s)
- Marija Cvetnić
- Department of Chemistry, Faculty of
Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Nikola Cindro
- Department of Chemistry, Faculty of
Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Nikola Bregović
- Department of Chemistry, Faculty of
Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Vladislav Tomišić
- Department of Chemistry, Faculty of
Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Cvetnić M, Cindro N, Topić E, Bregović N, Tomišić V. Supramolecular Handshakes: Characterization of Urea-Carboxylate Interactions Within Calixarene Frameworks. Chempluschem 2024; 89:e202400130. [PMID: 38526220 DOI: 10.1002/cplu.202400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The research of molecular capsules offers high application potential and numerous benefits in various fields. With the aim of forming supramolecular capsules which can be reversibly assembled and dissociated by simple external stimuli, we studied interactions between calixarenes containing urea and carboxylate moieties. To this end two ureido-derivatives of p-tert-butylcalix[4]arene comprising phenylureido-moieties and diacetate-calix[4]arenes were prepared. The binding of acetate by ureido-derivatives of calixarene in acetonitrile was characterized, revealing high affinity of ureido-calixarenes for carboxylates. This suggested high potential for uniting the complementary calix[4]arenes via H-bonds between carboxylic groups and urea moieties. The assembly of calixarenes was examined in detail by means of UV, 1H NMR, ITC, DOSY, MS, and conductometry providing insight in the structure-stability relationship. The tetraureido-calixarene derivative formed the most stable heterodimers with diacetate-calix[4]arenes featuring practically quantitative association upon mixing the two calixarene counterparts. The possibility of controlling the formation of the heterodimer by protonating the carboxylates, thereby hindering the interactions critical for capsule assembly, was investigated. Indeed, the reversibility of breaking and re-forming the heterodimer by addition of an acid and base to the solution containing urea- and carboxylate-derivative calix[4]arene was demonstrated using NMR spectroscopy.
Collapse
Affiliation(s)
- M Cvetnić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - N Cindro
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - E Topić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - N Bregović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - V Tomišić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| |
Collapse
|
4
|
Giovanardi G, Balestri D, Secchi A, Cera G. Diametric calix[6]arene gold(I) catalysts for intramolecular cyclopropanations of 1,6-dienynes. Org Biomol Chem 2022; 20:6464-6472. [PMID: 35894952 DOI: 10.1039/d2ob01074g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report a solid-state structural investigation of diametric calix[6]arene-based phosphine gold(I) cavitands which are characterised by two specific, different 1,2,3-alternate conformations in solution and in the solid state. The effect of the specific orientation of phosphines, with respect to macrocycles, was studied in intramolecular cyclopropanation of 1,6-dienynes. The general applicability of these catalysts was disclosed, delivering a family of polycycles with high yields and functional group tolerance.
Collapse
Affiliation(s)
- Gabriele Giovanardi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Davide Balestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
5
|
Giovanardi G, Secchi A, Arduini A, Cera G. Diametric calix[6]arene-based phosphine gold(I) cavitands. Beilstein J Org Chem 2022; 18:190-196. [PMID: 35233258 PMCID: PMC8848346 DOI: 10.3762/bjoc.18.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/02/2022] [Indexed: 12/18/2022] Open
Abstract
We report the synthesis and characterization, in low polarity solvents, of a novel class of diametric phosphine gold(I) cavitands characterized by a 1,2,3-alternate geometry. Preliminary catalytic studies were performed on a model cycloisomerization of 1,6-enynes as a function of the relative orientation of the bonded gold(I) nuclei with respect to the macrocyclic cavity.
Collapse
Affiliation(s)
- Gabriele Giovanardi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Arturo Arduini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|