1
|
Li K, Gilberti AL, Marden JA, Akula HK, Pollard AC, Guo S, Hu B, Tonge PJ, Qu W. Synthesis and Biological Evaluation of Fluorine-18 and Deuterium Labeled l-Fluoroalanines as Positron Emission Tomography Imaging Agents for Cancer Detection. J Med Chem 2024; 67:10293-10305. [PMID: 38838188 PMCID: PMC11258582 DOI: 10.1021/acs.jmedchem.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
To fully explore the potential of 18F-labeled l-fluoroalanine for imaging cancer and other chronic diseases, a simple and mild radiosynthesis method has been established to produce optically pure l-3-[18F]fluoroalanine (l-[18F]FAla), using a serine-derivatized, five-membered-ring sulfamidate as the radiofluorination precursor. A deuterated analogue, l-3-[18F]fluoroalanine-d3 (l-[18F]FAla-d3), was also prepared to improve metabolic stability. Both l-[18F]FAla and l-[18F]FAla-d3 were rapidly taken up by 9L/lacZ, MIA PaCa-2, and U87MG cells and were shown to be substrates for the alanine-serine-cysteine (ASC) amino acid transporter. The ability of l-[18F]FAla, l-[18F]FAla-d3, and the d-enantiomer, d-[18F]FAla-d3, to image tumors was evaluated in U87MG tumor-bearing mice. Despite the significant bone uptake was observed for both l-[18F]FAla and l-[18F]FAla-d3, the latter had enhanced tumor uptake compared to l-[18F]FAla, and d-[18F]FAla-d3 was not specifically taken up by the tumors. The enhanced tumor uptake of l-[18F]FAla-d3 compared with its nondeuterated counterpart, l-[18F]FAla, warranted the further biological investigation of this radiotracer as a potential cancer imaging agent.
Collapse
Affiliation(s)
- Kaixuan Li
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Alexa L. Gilberti
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jocelyn A. Marden
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Hari K. Akula
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- PET Research Core, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Alyssa C. Pollard
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Shuwen Guo
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Bao Hu
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- PET Research Core, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Radiology, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- Stony Brook Cancer Center, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Wenchao Qu
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- PET Research Core, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
2
|
Marie N, Ma JA, Cahard D. Amphiphilic Polyfluorinated Amino Ethers from Cyclic Sulfamidates. J Org Chem 2022; 87:16665-16675. [PMID: 36417566 DOI: 10.1021/acs.joc.2c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Regioselective ring opening of cyclic sulfamidates was achieved by means of nucleophilic polyfluorinated alkoxides to access achiral and chiral β- and γ-ORF amines and α-amino esters. Subsequent transformations provide free amines ready for incorporation into bioactive substances through amide bond formation or nucleophilic aromatic substitution.
Collapse
Affiliation(s)
- Nicolas Marie
- UMR 6014 COBRA, CNRS, Université de Rouen-Normandie, INSA Rouen, IRCOF, Mont Saint Aignan 76821, France
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dominique Cahard
- UMR 6014 COBRA, CNRS, Université de Rouen-Normandie, INSA Rouen, IRCOF, Mont Saint Aignan 76821, France
| |
Collapse
|