1
|
Ter Braak F, Houthuijs KJ, Elferink H, Kromm A, van Wieringen T, Berden G, Martens J, Oomens J, Boltje TJ. Investigation of Neighboring Group Participation in 3,4-Diacetylated Glycosyl Donors in the Gas Phase. Chemistry 2024; 30:e202402584. [PMID: 39222485 DOI: 10.1002/chem.202402584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
A key challenge in oligosaccharide synthesis is the stereoselective installation of glycosidic bonds. Each glycosidic linkage has one of two possible stereo-chemical geometries, α/β or 1,2-cis/trans. An established approach to install 1,2-trans glycosidic bonds is neighboring group participation (NGP), mediated by a 2-O-acyl group. Extension of this intramolecular stabilization to nucleophilic groups located at more remote positions has also been suggested, but remains poorly understood. Previously, we employed infrared ion spectroscopy to characterize the molecular ions of monoacetylated sugar donors and showed how the strength of the stabilizing effect depends on the position of the participating ester group on the glycosyl donor ring as well as on its relative stereochemistry. In this work, we investigated glycosyl donors carrying two acyl groups. Using isotope labelling and isomer population analysis we were able to resolving spectra of isomeric mixtures and establish the relative contribution of individual species. We conclude that 3,4-diacetyl mannosyl donors exclusively form a dioxanium ion as a result of C-3 acyl stabilization. In contrast, the glucosyl and galactosyl cations form mixtures of C-3 and C-4 acyl participation products. Hence, the combination of isotope labeling and population analysis allows for the study of increasingly complex glycosyl cations.
Collapse
Affiliation(s)
- Floor Ter Braak
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, the, Netherlands
| | - Kas J Houthuijs
- FELIX laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, the, Netherlands
| | - Hidde Elferink
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, the, Netherlands
| | - Alexandra Kromm
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, the, Netherlands
| | - Teun van Wieringen
- FELIX laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, the, Netherlands
| | - Giel Berden
- FELIX laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, the, Netherlands
| | - Jonathan Martens
- FELIX laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, the, Netherlands
| | - Jos Oomens
- FELIX laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, the, Netherlands
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, the, Netherlands
| |
Collapse
|
2
|
de Kleijne FJ, ter Braak F, Piperoudis D, Moons PH, Moons SJ, Elferink H, White PB, Boltje TJ. Detection and Characterization of Rapidly Equilibrating Glycosylation Reaction Intermediates Using Exchange NMR. J Am Chem Soc 2023; 145:26190-26201. [PMID: 38008912 PMCID: PMC10704605 DOI: 10.1021/jacs.3c08709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
The stereoselective introduction of glycosidic bonds (glycosylation) is one of the main challenges in the chemical synthesis of carbohydrates. Glycosylation reaction mechanisms are difficult to control because, in many cases, the exact reactive species driving product formation cannot be detected and the product outcome cannot be explained by the primary reaction intermediate observed. In these cases, reactions are expected to take place via other low-abundance reaction intermediates that are in rapid equilibrium with the primary reaction intermediate via a Curtin-Hammett scenario. Despite this principle being well-known in organic synthesis, mechanistic studies investigating this model in glycosylation reactions are complicated by the challenge of detecting the extremely short-lived reactive species responsible for product formation. Herein, we report the utilization of the chemical equilibrium between low-abundance reaction intermediates and the stable, readily observed α-glycosyl triflate intermediate in order to infer the structure of the former species by employing exchange NMR. Using this technique, we enabled the detection of reaction intermediates such as β-glycosyl triflates and glycosyl dioxanium ions. This demonstrates the power of exchange NMR to unravel reaction mechanisms as we aim to build a catalog of kinetic parameters, allowing for the understanding and eventual prediction of glycosylation reactions.
Collapse
Affiliation(s)
| | | | - Dimitrios Piperoudis
- Institute for Molecules and
Materials (IMM), Synthetic Organic Chemistry, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Peter H. Moons
- Institute for Molecules and
Materials (IMM), Synthetic Organic Chemistry, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Sam J. Moons
- Institute for Molecules and
Materials (IMM), Synthetic Organic Chemistry, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Hidde Elferink
- Institute for Molecules and
Materials (IMM), Synthetic Organic Chemistry, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Paul B. White
- Institute for Molecules and
Materials (IMM), Synthetic Organic Chemistry, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Thomas J. Boltje
- Institute for Molecules and
Materials (IMM), Synthetic Organic Chemistry, Radboud University, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
3
|
Upadhyaya K, Osorio-Morales N, Crich D. Can Side-Chain Conformation and Glycosylation Selectivity of Hexopyranosyl Donors Be Controlled with a Dummy Ligand? J Org Chem 2023; 88:3678-3696. [PMID: 36877600 PMCID: PMC10028612 DOI: 10.1021/acs.joc.2c02889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The use of a phenylthio group (SPh) as a dummy ligand at the 6-position to control the side-chain conformation of a series of hexopyranosyl donors is described. The SPh group limits side-chain conformation in a configuration-specific manner, which parallels that seen in the heptopyranosides, and so influences glycosylation selectivity. With both d- and l-glycero-d-galacto-configured donors, the equatorial products are highly favored as they are with an l-glycero-d-gluco donor. For the d-glycero-d-gluco donor, on the other hand, modest axial selectivity is observed. Selectivity patterns are discussed in terms of the side-chain conformation of the donors in combination with the electron-withdrawing effect of the thioacetal group. After glycosylation, removal of the thiophenyl moiety and hydrogenolytic deprotection is achieved in a single step with Raney nickel.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Nicolas Osorio-Morales
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Ishiwata A, Tanaka K, Ao J, Ding F, Ito Y. Recent advances in stereoselective 1,2- cis- O-glycosylations. Front Chem 2022; 10:972429. [PMID: 36059876 PMCID: PMC9437320 DOI: 10.3389/fchem.2022.972429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023] Open
Abstract
For the stereoselective assembly of bioactive glycans with various functions, 1,2-cis-O-glycosylation is one of the most essential issues in synthetic carbohydrate chemistry. The cis-configured O-glycosidic linkages to the substituents at two positions of the non-reducing side residue of the glycosides such as α-glucopyranoside, α-galactopyranoside, β-mannopyranoside, β-arabinofuranoside, and other rather rare glycosides are found in natural glycans, including glycoconjugate (glycoproteins, glycolipids, proteoglycans, and microbial polysaccharides) and glycoside natural products. The way to 1,2-trans isomers is well sophisticated by using the effect of neighboring group participation from the most effective and kinetically favored C-2 substituent such as an acyl group, although high stereoselective synthesis of 1,2-cis glycosides without formation of 1,2-trans isomers is far less straightforward. Although the key factors that control the stereoselectivity of glycosylation are largely understood since chemical glycosylation was considered to be one of the useful methods to obtain glycosidic linkages as the alternative way of isolation from natural sources, strictly controlled formation of these 1,2-cis glycosides is generally difficult. This minireview introduces some of the recent advances in the development of 1,2-cis selective glycosylations, including the quite recent developments in glycosyl donor modification, reaction conditions, and methods for activation of intermolecular glycosylation, including the bimodal glycosylation strategy for 1,2-cis and 1,2-trans glycosides, as well as intramolecular glycosylations, including recent applications of NAP-ether-mediated intramolecular aglycon delivery.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|