1
|
Antal M. Molecular Anatomy of Synaptic and Extrasynaptic Neurotransmission Between Nociceptive Primary Afferents and Spinal Dorsal Horn Neurons. Int J Mol Sci 2025; 26:2356. [PMID: 40076973 PMCID: PMC11900602 DOI: 10.3390/ijms26052356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Sensory signals generated by peripheral nociceptors are transmitted by peptidergic and nonpeptidergic nociceptive primary afferents to the superficial spinal dorsal horn, where their central axon terminals establish synaptic contacts with secondary sensory spinal neurons. In the case of suprathreshold activation, the axon terminals release glutamate into the synaptic cleft and stimulate postsynaptic spinal neurons by activating glutamate receptors located on the postsynaptic membrane. When overexcitation is evoked by peripheral inflammation, neuropathy or pruritogens, peptidergic nociceptive axon terminals may corelease various neuropeptides, neurotrophins and endomorphin, together with glutamate. However, in contrast to glutamate, neuropeptides, neurotrophins and endomorphin are released extrasynaptically. They diffuse from the site of release and modulate the function of spinal neurons via volume transmission, activating specific extrasynaptic receptors. Thus, the released neuropeptides, neurotrophins and endomorphin may evoke excitation, disinhibition or inhibition in various spinal neuronal populations, and together with glutamate, induce overall overexcitation, called central sensitization. In addition, the synaptic and extrasynaptic release of neurotransmitters is subjected to strong retrograde control mediated by various retrogradely acting transmitters, messengers, and their presynaptic receptors. Moreover, the composition of this complex chemical apparatus is heavily dependent on the actual patterns of nociceptive primary afferent activation in the periphery. This review provides an overview of the complexity of this signaling apparatus, how nociceptive primary afferents can activate secondary sensory spinal neurons via synaptic and volume transmission in the superficial spinal dorsal horn, and how these events can be controlled by presynaptic mechanisms.
Collapse
Affiliation(s)
- Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Kuroda KO, Fukumitsu K, Kurachi T, Ohmura N, Shiraishi Y, Yoshihara C. Parental brain through time: The origin and development of the neural circuit of mammalian parenting. Ann N Y Acad Sci 2024; 1534:24-44. [PMID: 38426943 DOI: 10.1111/nyas.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This review consolidates current knowledge on mammalian parental care, focusing on its neural mechanisms, evolutionary origins, and derivatives. Neurobiological studies have identified specific neurons in the medial preoptic area as crucial for parental care. Unexpectedly, these neurons are characterized by the expression of molecules signaling satiety, such as calcitonin receptor and BRS3, and overlap with neurons involved in the reproductive behaviors of males but not females. A synthesis of comparative ecology and paleontology suggests an evolutionary scenario for mammalian parental care, possibly stemming from male-biased guarding of offspring in basal vertebrates. The terrestrial transition of tetrapods led to prolonged egg retention in females and the emergence of amniotes, skewing care toward females. The nocturnal adaptation of Mesozoic mammalian ancestors reinforced maternal care for lactation and thermal regulation via endothermy, potentially introducing metabolic gate control in parenting neurons. The established maternal care may have served as the precursor for paternal and cooperative care in mammals and also fostered the development of group living, which may have further contributed to the emergence of empathy and altruism. These evolution-informed working hypotheses require empirical validation, yet they offer promising avenues to investigate the neural underpinnings of mammalian social behaviors.
Collapse
Affiliation(s)
- Kumi O Kuroda
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| | - Kansai Fukumitsu
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takuma Kurachi
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Nami Ohmura
- RIKEN Center for Brain Science, Saitama, Japan
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Yuko Shiraishi
- RIKEN Center for Brain Science, Saitama, Japan
- Kawamura Gakuen Woman's University, Chiba, Japan
| | - Chihiro Yoshihara
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
3
|
Moore E, Bell IM, Fraley ME, Burgey CS, White RB, Li CC, Regan CP, Danziger A, McGaraughty SP, Naseri Kouzehgarani G, Salvatore C, Banerjee P. Pharmacologic characterization of atogepant: A potent and selective calcitonin gene-related peptide receptor antagonist. Cephalalgia 2024; 44:3331024231226186. [PMID: 38215228 DOI: 10.1177/03331024231226186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
BACKGROUND The trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) is identified as an essential element in migraine pathogenesis. METHODS In vitro and in vivo studies evaluated pharmacologic properties of the CGRP receptor antagonist atogepant. Radioligand binding using 125I-CGRP and cyclic adenosine monophosphate (cAMP) accumulation assays were conducted in human embryonic kidney 293 cells to assess affinity, functional potency and selectivity. Atogepant in vivo potency was assessed in the rat nitroglycerine model of facial allodynia and primate capsaicin-induced dermal vasodilation (CIDV) pharmacodynamic model. Cerebrospinal fluid/brain penetration and behavioral effects of chronic dosing and upon withdrawal were evaluated in rats. RESULTS Atogepant exhibited high human CGRP receptor-binding affinity and potently inhibited human α-CGRP-stimulated cAMP responses. Atogepant exhibited significant affinity for the amylin1 receptor but lacked appreciable affinities for adrenomedullin, calcitonin and other known neurotransmitter receptor targets. Atogepant dose-dependently inhibited facial allodynia in the rat nitroglycerine model and produced significant CIDV inhibition in primates. Brain penetration and behavioral/physical signs during chronic dosing and abrupt withdrawal were minimal in rats. CONCLUSIONS Atogepant is a competitive antagonist with high affinity, potency and selectivity for the human CGRP receptor. Atogepant demonstrated a potent, concentration-dependent exposure/efficacy relationship between atogepant plasma concentrations and inhibition of CGRP-dependent effects.
Collapse
|
4
|
Bortoletto AS, Parchem RJ. A pancreatic player in dementia: pathological role for islet amyloid polypeptide accumulation in the brain. Neural Regen Res 2023; 18:2141-2146. [PMID: 37056121 PMCID: PMC10328265 DOI: 10.4103/1673-5374.369095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Type 2 diabetes mellitus patients have a markedly higher risk of developing dementia. While multiple factors contribute to this predisposition, one of these involves the increased secretion of amylin, or islet amyloid polypeptide, that accompanies the pathophysiology of type 2 diabetes mellitus. Islet amyloid polypeptide accumulation has undoubtedly been implicated in various forms of dementia, including Alzheimer's disease and vascular dementia, but the exact mechanisms underlying islet amyloid polypeptide's causative role in dementia are unclear. In this review, we have summarized the literature supporting the various mechanisms by which islet amyloid polypeptide accumulation may cause neuronal damage, ultimately leading to the clinical symptoms of dementia. We discuss the evidence for islet amyloid polypeptide deposition in the brain, islet amyloid polypeptide interaction with other amyloids implicated in neurodegeneration, neuroinflammation caused by islet amyloid polypeptide deposition, vascular damage induced by islet amyloid polypeptide accumulation, and islet amyloid polypeptide-induced cytotoxicity. There are very few therapies approved for the treatment of dementia, and of these, clinical responses have been controversial at best. Therefore, investigating new, targetable pathways is vital for identifying novel therapeutic strategies for treating dementia. As such, we conclude this review by discussing islet amyloid polypeptide accumulation as a potential therapeutic target not only in treating type 2 diabetes mellitus but as a future target in treating or even preventing dementia associated with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Angelina S. Bortoletto
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Neuroscience, Department of Molecular and Cellular Biology, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Neuroscience, Department of Molecular and Cellular Biology, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Garelja ML, Hay DL. A narrative review of the calcitonin peptide family and associated receptors as migraine targets: Calcitonin gene-related peptide and beyond. Headache 2022; 62:1093-1104. [PMID: 36226379 PMCID: PMC9613588 DOI: 10.1111/head.14388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/08/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To summarize the pharmacology of the calcitonin peptide family of receptors and explore their relationship to migraine and current migraine therapies. BACKGROUND Therapeutics that dampen calcitonin gene-related peptide (CGRP) signaling are now in clinical use to prevent or treat migraine. However, CGRP belongs to a broader peptide family, including the peptides amylin and adrenomedullin. Receptors for this family are complex, displaying overlapping pharmacologic profiles. Despite the focus on CGRP and the CGRP receptor in migraine research, recent evidence implicates related peptides and receptors in migraine. METHODS This narrative review summarizes literature encompassing the current pharmacologic understanding of the calcitonin peptide family, and the evidence that links specific members of this family to migraine and migraine-like behaviors. RESULTS Recent work links amylin and adrenomedullin to migraine-like behavior in rodent models and migraine-like attacks in individuals with migraine. We collate novel information that suggests females may be more sensitive to amylin and CGRP in the context of migraine-like behaviors. We report that drugs designed to antagonize the canonical CGRP receptor also antagonize a second CGRP-responsive receptor and speculate as to whether this influences therapeutic efficacy. We also discuss the specificity of current drugs with regards to CGRP isoforms and how this may influence therapeutic profiles. Lastly, we emphasize that receptors related to, but distinct from, the canonical CGRP receptor may represent underappreciated and novel drug targets. CONCLUSION Multiple peptides within the calcitonin family have been linked to migraine. The current focus on CGRP and its canonical receptor may be obscuring pathways to further therapeutics. Drug discovery schemes that take a wider view of the receptor family may lead to the development of new anti-migraine drugs with favorable clinical profiles. We also propose that understanding these related peptides and receptors may improve our interpretation regarding the mechanism of action of current drugs.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Debbie L. Hay
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand,Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
6
|
Fukumitsu K, Kaneko M, Maruyama T, Yoshihara C, Huang AJ, McHugh TJ, Itohara S, Tanaka M, Kuroda KO. Amylin-Calcitonin receptor signaling in the medial preoptic area mediates affiliative social behaviors in female mice. Nat Commun 2022; 13:709. [PMID: 35136064 PMCID: PMC8825811 DOI: 10.1038/s41467-022-28131-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Social animals actively engage in contact with conspecifics and experience stress upon isolation. However, the neural mechanisms coordinating the sensing and seeking of social contacts are unclear. Here we report that amylin-calcitonin receptor (Calcr) signaling in the medial preoptic area (MPOA) mediates affiliative social contacts among adult female mice. Isolation of females from free social interactions first induces active contact-seeking, then depressive-like behavior, concurrent with a loss of Amylin mRNA expression in the MPOA. Reunion with peers induces physical contacts, activates both amylin- and Calcr-expressing neurons, and leads to a recovery of Amylin mRNA expression. Chemogenetic activation of amylin neurons increases and molecular knockdown of either amylin or Calcr attenuates contact-seeking behavior, respectively. Our data provide evidence in support of a previously postulated origin of social affiliation in mammals.
Collapse
Affiliation(s)
- Kansai Fukumitsu
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.
| | - Misato Kaneko
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.,Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Teppo Maruyama
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.,Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Arthur J Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Minoru Tanaka
- Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.
| |
Collapse
|
7
|
Rees T, Hendrikse E, Hay D, Walker C. Beyond CGRP: The calcitonin peptide family as targets for migraine and pain. Br J Pharmacol 2022; 179:381-399. [PMID: 34187083 PMCID: PMC9441195 DOI: 10.1111/bph.15605] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023] Open
Abstract
The CGRP system has emerged as a key pharmacological target for the treatment of migraine. However, some individuals who suffer from migraine have low or no response to anti-CGRP or other treatments, suggesting the need for additional clinical targets. CGRP belongs to the calcitonin family of peptides, which includes calcitonin, amylin, adrenomedullin and adrenomedullin 2. These peptides display a range of pro-nociceptive and anti-nociceptive actions, in primary headache conditions such as migraine. Calcitonin family peptides also show expression at sites relevant to migraine and pain. This suggests that calcitonin family peptides and their receptors, beyond CGRP, may be therapeutically useful in the treatment of migraine and other pain disorders. This review considers the localisation of the calcitonin family in peripheral pain pathways and discusses how they may contribute to migraine and pain. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.
Collapse
Affiliation(s)
- T.A. Rees
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - E.R Hendrikse
- School of Biological Science, University of Auckland, Auckland, NZ
| | - D.L. Hay
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| | - C.S Walker
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| |
Collapse
|
8
|
Hsu YC, Ma KH, Guo SL, Lin BF, Tsai CS, Yeh CC. The Occurrence of Pain-Induced Depression Is Different between Rat Models of Inflammatory and Neuropathic Pain. J Clin Med 2021; 10:jcm10174016. [PMID: 34501464 PMCID: PMC8432452 DOI: 10.3390/jcm10174016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Various pain conditions may be associated with depressed mood. However, the effect of inflammatory or neuropathic pain on depression-like behavior and its associated time frame has not been well established in rat models. This frontward study investigated the differences in pain behavior, depression-like behavior, and serotonin transporter (SERT) distribution in the brain between rats subjected to spared nerve injury (SNI)-induced neuropathic pain or complete Freund’s adjuvant (CFA)-induced inflammatory pain. A dynamic plantar aesthesiometer and an acetone spray test were used to evaluate mechanical and cold allodynia responses, and depression-like behavior was examined using a forced swimming test and sucrose preference test. We also investigated SERT expression by using positron emission tomography. We found that the inflammation-induced pain was less severe than neuropathic pain from days 3 to 28 after induced pain; however, the CFA-injected rats exhibited more noticeable depression-like behavior and had significantly reduced SERT expression in the brain regions (thalamus and striatum) at an early stage (on days 14, 21, and 28 in two groups of CFA-injected rats versus day 28 in SNI rats). We speculated that not only the pain response after initial injury but also the subsequent neuroinflammation may have been the crucial factors influencing depression-like behavior in rats.
Collapse
Affiliation(s)
- Yung-Chi Hsu
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.H.); (S.-L.G.); (B.-F.L.)
- Integrated Pain Management Center, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan;
| | - Shu-Lin Guo
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.H.); (S.-L.G.); (B.-F.L.)
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Bo-Feng Lin
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.H.); (S.-L.G.); (B.-F.L.)
- Integrated Pain Management Center, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114, Taiwan
| | - Chun-Chang Yeh
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-C.H.); (S.-L.G.); (B.-F.L.)
- Integrated Pain Management Center, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8792-3311 (ext. 17051); Fax: +886-2-8792-7127
| |
Collapse
|
9
|
Rees TA, Hay DL, Walker CS. Amylin antibodies frequently display cross-reactivity with CGRP: characterization of eight amylin antibodies. Am J Physiol Regul Integr Comp Physiol 2021; 320:R697-R703. [PMID: 33565362 PMCID: PMC11961109 DOI: 10.1152/ajpregu.00338.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 01/07/2023]
Abstract
Amylin is a 37-amino acid endocrine hormone secreted from the pancreas in response to nutrient intake, acting centrally to promote meal-ending satiation. With many studies linking amylin action to the nervous system, determining the distribution or expression of amylin in the nervous system is critical. However, amylin shares sequence identity and structural homology to the related neuropeptide calcitonin gene-related peptide (CGRP). This creates challenges in identifying selective amylin antibodies that do not cross-react with CGRP, especially in neural tissues, where CGRP is densely packed into secretory vesicles. Here, we characterized eight amylin antibodies to determine their ability to detect amylin and cross-react with rat or human αCGRP, using immunoblots and preabsorption controls in rat pancreas. We observed that amylin antibodies frequently cross-reacted with αCGRP and are therefore not suitable for use in tissues that highly express CGRP. Earlier work using these antibodies should be revisited in light of our findings.
Collapse
Affiliation(s)
- Tayla A Rees
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Irimia P, Martínez-Valbuena I, Mínguez-Olaondo A, Domínguez-Vivero C, Sánchez-Arias JA, Martínez-Vila E, Luquin MR, Leira R. Interictal amylin levels in chronic migraine patients: A case-control study. Cephalalgia 2020; 41:604-612. [PMID: 33269952 DOI: 10.1177/0333102420977106] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recently, amylin and its receptors were found in different structures involved in migraine pathophysiology. Here, we evaluate interictal concentrations of amylin and calcitonin gene-related peptide in peripheral blood as biomarkers for chronic migraine. METHODS We prospectively recruited patients with episodic migraine, chronic migraine and healthy controls. Interictal amylin and calcitonin gene-related peptide levels were assessed in blood samples using enzyme linked immunosorbent assay. RESULTS We assessed plasma samples from 58 patients with episodic migraine (mean age 37.71 ± 10.47, 87.9% female), 191 with chronic migraine (mean age 46.03 ± 11.93, 95% female), and on 68 healthy controls (mean age 43.58 ± 11.08 years, 86% female). Body mass index was 25.94 ± 4.53 kg/m2 for migraine patients and 25.13 ± 4.92 kg/m2 for healthy controls (p = 0.0683). Interictal plasma amylin levels were higher in chronic migraine patients (47.1 pg/mL) than in the episodic migraine patients (28.84 pg/mL, p < 0.0001) and healthy controls (24.74 pg/mL, p < 0.0001). Plasma calcitonin gene-related peptide levels were increased (20.01 pg/mL) in chronic migraine patients when compared to healthy controls (11.37 pg/mL, p = 0.0016), but not to episodic migraine patients (18.89 pg/mL, p = 0.4369). Applying a cut-off concentration of 39.68 pg/mL plasma amylin, the sensitivity to differentiate chronic migraine from healthy controls was 57.6% and the specificity was 88.2%. Variables such as age, analgesic overuse, depression, allodynia, use of preventive medication or a history of aura did not influence the plasma concentrations of amylin or calcitonin gene-related peptide. CONCLUSION Interictal plasma amylin levels are higher in patients with chronic migraine and may serve as a diagnostic biomarker for chronic migraine.
Collapse
Affiliation(s)
- Pablo Irimia
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Iván Martínez-Valbuena
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,Navarra's Health Research Institute (IDISNA), Pamplona, Spain.,Regenerative Therapy Laboratory, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ane Mínguez-Olaondo
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,Department of Neurology, Hospital Universitario Donostia, San Sebastián, Spain
| | - Clara Domínguez-Vivero
- Department of Neurology, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Spain.,Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Spain
| | - Juan-Antonio Sánchez-Arias
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,Navarra's Health Research Institute (IDISNA), Pamplona, Spain.,Regenerative Therapy Laboratory, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Eduardo Martínez-Vila
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - María-Rosario Luquin
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,Navarra's Health Research Institute (IDISNA), Pamplona, Spain.,Regenerative Therapy Laboratory, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Rogelio Leira
- Department of Neurology, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Spain.,Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Spain
| |
Collapse
|
11
|
Asiri MMH, Engelsman S, Eijkelkamp N, Höppener JWM. Amyloid Proteins and Peripheral Neuropathy. Cells 2020; 9:E1553. [PMID: 32604774 PMCID: PMC7349787 DOI: 10.3390/cells9061553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Painful peripheral neuropathy affects millions of people worldwide. Peripheral neuropathy develops in patients with various diseases, including rare familial or acquired amyloid polyneuropathies, as well as some common diseases, including type 2 diabetes mellitus and several chronic inflammatory diseases. Intriguingly, these diseases share a histopathological feature-deposits of amyloid-forming proteins in tissues. Amyloid-forming proteins may cause tissue dysregulation and damage, including damage to nerves, and may be a common cause of neuropathy in these, and potentially other, diseases. Here, we will discuss how amyloid proteins contribute to peripheral neuropathy by reviewing the current understanding of pathogenic mechanisms in known inherited and acquired (usually rare) amyloid neuropathies. In addition, we will discuss the potential role of amyloid proteins in peripheral neuropathy in some common diseases, which are not (yet) considered as amyloid neuropathies. We conclude that there are many similarities in the molecular and cell biological defects caused by aggregation of the various amyloid proteins in these different diseases and propose a common pathogenic pathway for "peripheral amyloid neuropathies".
Collapse
Affiliation(s)
- Mohammed M. H. Asiri
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
- The National Centre for Genomic Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, 11461 Riyadh, Saudi Arabia
| | - Sjoukje Engelsman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
| | - Jo W. M. Höppener
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| |
Collapse
|