1
|
Nooranian S, Mohammadinejad A, Mohajeri T, Aleyaghoob G, Kazemi Oskuee R. Biosensors based on aptamer-conjugated gold nanoparticles: A review. Biotechnol Appl Biochem 2021; 69:1517-1534. [PMID: 34269486 DOI: 10.1002/bab.2224] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Simply synthetized gold nanoparticles have been highly used in medicine and biotechnology as a result of their biocompatibility, conductivity, and being easily functionalized with biomolecules such as aptamer. Aptamer-conjugated gold nanoparticle structures synergically possess characteristics of both aptamer and gold nanoparticles including high binding affinity, high biocompatibility, enhanced target selectivity, and long circulatory half-life. Aptamer-conjugated gold nanoparticles have extensively gained considerable attention for designing of biosensing systems due to their interesting optical and electrochemical features. Moreover, biosensors based on aptamer-gold nanoparticles are easy to use, with fast response, and inexpensive which make them ideal in individualized medicine, disease markers detection, food safety, and so forth. Moreover, due to high selectivity and biocompatibility of aptamer-gold nanoparticles, these biosensing platforms are ideal tools for targeted drug delivery systems. The application of this nanostructure as diagnostic and therapeutic tool has been developed for detection of cancer in the early stage by detecting cancer biomarkers, pathogens, proteins, toxins, antibiotics, adenosine triphosphate, and other small molecules. This review obviously demonstrates that this nanostructure effectively is applicable in the field of biomedicine and possesses potential of commercialization aims.
Collapse
Affiliation(s)
- Samin Nooranian
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Mohammadinejad
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taraneh Mohajeri
- Department of Obstetrics & Gynecology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020; 220:121437. [PMID: 32928439 DOI: 10.1016/j.talanta.2020.121437] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Heavy metal ion pollution is a severe problem in environmental protection and especially in human health due to their bioaccumulation in organisms. Mercury (II) (Hg2+), even at low concentrations, can lead to DNA damage and give permanent harm to the central nervous system by easily passing through biological membranes. Therefore, sensitive detection and monitoring of Hg2+ is of particular interest with significant specificity. In this review, aptamer-based strategies in combination with nanostructures as well as several other strategies to solve addressed problems in sensor development for Hg2+ are discussed in detail. In particular, the analytical performance of different aptamer and oligonucleotide-based strategies using different signal improvement approaches based on nanoparticles were compared within each strategy and in between. Although quite a number of the suggested methodologies analyzed in this review fulfills the standard requirements, further development is still needed on real sample analysis and analytical performance parameters.
Collapse
|
3
|
Farzin L, Shamsipur M, Sheibani S. A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta 2017; 174:619-627. [PMID: 28738631 DOI: 10.1016/j.talanta.2017.06.066] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/21/2022]
Abstract
Recent developments in biotechnology offer the new methods for the sensitive detection of heavy metals based on the affinity and specificity of aptamers, as nucleic acid ligands selected from random sequence pools in vitro. Heavy metals have received considerable importance as the most toxic metallic pollutants which may cause serious environmental damages. They are classified as trace elements because of their presence in trace concentrations in various environmental matrices. Thus, the precise and sensitive methods to detect heavy metals are important to ensure human and environment safety. Aptamers as the biological probes, show high binding affinity which can often be directly translated into high detection sensitivity. On the other hand, high selectivity and stability make them possible to detect a wide range of targets, especially metallic ions. This review provides current progress of aptamers for environmental and biological monitoring of heavy metals using the nanomaterials mainly in two groups: (i) aptamer based biosensors (aptasensors) and (ii) aptamer based biosorbents (aptasorbents). The introduction of nanomaterials can efficiently increase the immobilization quantity of aptamers. Furthermore, they play an important role in the orientation and assembly density controlling of aptamers for the optimized recognition ability.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, P.O. Box 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran
| |
Collapse
|
4
|
Electrochemical biosensor for silver ions based on amplification of DNA–Au bio–bar codes and silver enhancement. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
SONG X, WU Y, WU L, HU Y, LI W, GUO Z, SU X, JIANG X. Christmas-tree Derived Amplification Immuno-strategy for Sensitive Visual Detection of Vibrio parahaemolyticus Based on Gold Label Silver Stain Technology. ANAL SCI 2017; 33:889-895. [DOI: 10.2116/analsci.33.889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Xinxin SONG
- Faculty of Materials Science and Chemical Engineering, Ningbo University
| | - Yanjie WU
- Faculty of Materials Science and Chemical Engineering, Ningbo University
| | - Lin WU
- Faculty of Materials Science and Chemical Engineering, Ningbo University
| | - Yufang HU
- Faculty of Materials Science and Chemical Engineering, Ningbo University
| | - Wenrou LI
- Faculty of Materials Science and Chemical Engineering, Ningbo University
| | - Zhiyong GUO
- Faculty of Materials Science and Chemical Engineering, Ningbo University
| | - Xiurong SU
- School of Marine Sciences, Ningbo University
| | - Xiaohua JIANG
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic
| |
Collapse
|
6
|
Khalid H, Yu H, Wang L, Amer WA, Akram M, Abbasi NM, ul-Abdin Z, Saleem M. Synthesis of ferrocene-based polythiophenes and their applications. Polym Chem 2014. [DOI: 10.1039/c4py01057d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Zhang Z, Li W, Zhao Q, Cheng M, Xu L, Fang X. Highly sensitive visual detection of copper (II) using water-soluble azide-functionalized gold nanoparticles and silver enhancement. Biosens Bioelectron 2014; 59:40-4. [PMID: 24690560 DOI: 10.1016/j.bios.2014.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/21/2014] [Accepted: 03/01/2014] [Indexed: 12/18/2022]
Abstract
A high-sensitive method for the visual detection of copper ions in aqueous solution is developed. The method is based on copper ion-catalyzed 'click' reaction between the water-soluble azide-functionalized gold nanoparticles (AuNPs) and alkyne-modified glass slide. The PEG linker was employed as a stabilizing component along with the terminal azide group to keep the AuNPs stably dispersed in water without the assistance of any organic solvent. In the presence of copper ions, the AuNPs are 'clicked' on the slide, and the darkness of the AuNPs in the sample spot is promoted by silver enhancement process. Only a tiny amount of sample (10 μl) is needed with the detectable concentration down to 62 pM by the commonly used flatbed scanner, which is 2-3 orders of magnitude lower than those in previous reports. The selectivity relative to other potentially interfering ions and the applicability in real samples, human serum and tap water, have also been evaluated. Our method has a good potential in point-of-use applications and environment surveys.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China
| | - Wenqing Li
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Qiuling Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China
| | - Ming Cheng
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China
| | - Li Xu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China.
| |
Collapse
|
8
|
Chen B, Wang Z, Hu D, Ma Q, Guo Z, Jiang X, Wang S. Determination of Nanomolar Levels of Mercury(II) by Exploiting the Silver Stain Enhancement of the Aggregation of Aptamer-Functionalized Gold Nanoparticles. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.853183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Yuan J, Tao Z, Yu Y, Ma X, Xia Y, Wang L, Wang Z. A visual detection method for Salmonella Typhimurium based on aptamer recognition and nanogold labeling. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Lönne M, Zhu G, Stahl F, Walter JG. Aptamer-modified nanoparticles as biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:121-54. [PMID: 23824145 DOI: 10.1007/10_2013_231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aptamers are short oligonucleotides that are capable of selectively binding to their corresponding target. Therefore, they can be thought of as a nucleic acid-based alternative to antibodies and can substitute for their amino acid-based counterparts in analytical applications, including as receptors in biosensors. Here they offer several advantages because their nucleic acid nature and their binding via an induced fit mechanism enable novel sensing strategies. In this article, the utilization of aptamers as novel bio-receptors in combination with nanoparticles as transducer elements is reviewed. In addition to these analytical applications, the medical relevance of aptamer-modified nanoparticles is described.
Collapse
Affiliation(s)
- Maren Lönne
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstr. 5, 30167, Hannover, Germany
| | | | | | | |
Collapse
|
11
|
Wang N, Cao X, Chen Q, Lin G. Ag Nanobelts: Synthesis, Morphological Evolution, and Their Use as Electrocatalysts for Oxygen Reduction. Chemistry 2012; 18:6049-54. [DOI: 10.1002/chem.201103926] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/02/2012] [Indexed: 11/10/2022]
|
12
|
Mascini M, Palchetti I, Tombelli S. Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed Engl 2011; 51:1316-32. [PMID: 22213382 DOI: 10.1002/anie.201006630] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Indexed: 12/11/2022]
Abstract
In recent years new nucleic acid and protein-based combinatorial molecules have attracted the attention of researchers working in various areas of science, ranging from medicine to analytical chemistry. These molecules, called aptamers, have been proposed as alternatives to antibodies in many different applications. The aim of this Review is to illustrate the peculiarities of these combinatorial molecules which have initially been explored for their importance in molecular medicine, but have enormous potential in other biotechnological fields historically dominated by antibodies, such as bioassays. A description of these molecules is given, and the methods for their selection and production are also summarized. Moreover, critical aspects related to these molecules are discussed.
Collapse
Affiliation(s)
- Marco Mascini
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | | | | |
Collapse
|
13
|
Mascini M, Palchetti I, Tombelli S. Nucleinsäure- und Peptidaptamere: Grundlagen und bioanalytische Aspekte. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Lepage PH, Peytavi R, Bergeron MG, Leclerc M. Amplification strategy using aggregates of ferrocene-containing cationic polythiophene for sensitive and specific electrochemical detection of DNA. Anal Chem 2011; 83:8086-92. [PMID: 21932839 DOI: 10.1021/ac200713f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new electrochemical amplification strategy for an ultrasensitive electrochemical detection of DNA sequences using aggregates composed of a water-soluble, ferrocene-functionalized polythiophene. A two-step hybridization is performed at one addressing surface with PNA capture probes whereas the electrochemical detection is done on an electrode nearby. Specific and quantitative detection of DNA targets with a detection limit of 4 × 10(-16) M (about 4 zeptomoles or about 2500 copies of oligonucleotides) was achieved.
Collapse
Affiliation(s)
- Patricia Harding Lepage
- Canada Research Chair on Electroactive and Photoactive Polymers, Département de Chimie, Université Laval, Québec City, Québec, Canada
| | | | | | | |
Collapse
|
15
|
Cao X, Ye Y, Liu S. Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 2011; 417:1-16. [DOI: 10.1016/j.ab.2011.05.027] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/09/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022]
|
16
|
Ji H, Dong H, Yan F, Lei J, Ding L, Gao W, Ju H. Visual Scanometric Detection of DNA through Silver Enhancement Regulated by Gold-Nanoparticle Aggregation with a Molecular Beacon as the Trigger. Chemistry 2011; 17:11344-9. [DOI: 10.1002/chem.201100563] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Indexed: 11/11/2022]
|
17
|
Liu ZF, Ge J, Zhao XS. Quantitative detection of adenosine in urine using silver enhancement of aptamer-gold nanoparticle aggregation and progressive dilution. Chem Commun (Camb) 2011; 47:4956-8. [PMID: 21445394 DOI: 10.1039/c1cc10460h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We implement the progressive dilution strategy to bring assays based on gold nanoparticles to a quantitative level. This is demonstrated by the detection of adenosine in urine by combining progressive dilution with the silver enhancement of aptamer-gold nanoparticle aggregation, giving good accuracy, high selectivity, and an unlimited dynamic range above LOD.
Collapse
Affiliation(s)
- Zhao Fang Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
18
|
Wang W, Wu WY, Zhong X, Wang W, Miao Q, Zhu JJ. Aptamer-based PDMS-gold nanoparticle composite as a platform for visual detection of biomolecules with silver enhancement. Biosens Bioelectron 2010; 26:3110-4. [PMID: 21227677 DOI: 10.1016/j.bios.2010.10.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/12/2010] [Accepted: 10/21/2010] [Indexed: 11/28/2022]
Abstract
A sensitive colorimetric detection for biomolecules based on aptamer was described. Poly(dimethylsiloxane) (PDMS)-gold nanoparticles (AuNPs) composite film was used as a platform for immobilizing anti-target aptamer. PDMS-AuNPs composite film only covered with aptamer showed high inhibiting ability towards silver reduction, after target molecules were conjugated on the modified surface, the catalytic efficiency of AuNPs for silver reduction was increased. In this system, the darkness density of silver enhancement was applied for target quantitative measurement. Lysozyme and adenosine 5'-triphosphate (ATP) were tested as the models, quantitative measurements with imaging software or semiquantitative measurements with naked eyes were carried out in the range of 1×10(-2)-1 μg/mL and 1×10(-4)-1×10(3) μg/mL, the volume of reagent using in each assay is 15 μL or less. We speculated that aptamer-target conjugates' inhibition ability for AuNPs' catalytic efficiency toward silver reduction might come from charge and spatial effects. This study can offer a completely novel and relatively general approach for colorimetrical aptamer sensors with good analytical properties and potential applications. The sensor could be coupled with digital transmission of images for remote monitoring system in diagnosis, food control, and environmental analysis.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, PR China
| | | | | | | | | | | |
Collapse
|
19
|
XU GF, LI H, ZHANG C, SUN ZY, ZHONG WY, XU DK, CHEN HY. Research and Application of Visual Detection Based on Quantum Dots Coupled with Silver Enhancement. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60069-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
|
21
|
Ding L, Qian R, Xue Y, Cheng W, Ju H. In Situ Scanometric Assay of Cell Surface Carbohydrate by Glyconanoparticle-Aggregation-Regulated Silver Enhancement. Anal Chem 2010; 82:5804-9. [DOI: 10.1021/ac100866e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lin Ding
- Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, Department of Chemistry, Nanjing University, Nanjing 210093, and Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education of China, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Ruocan Qian
- Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, Department of Chemistry, Nanjing University, Nanjing 210093, and Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education of China, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Yadong Xue
- Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, Department of Chemistry, Nanjing University, Nanjing 210093, and Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education of China, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Wei Cheng
- Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, Department of Chemistry, Nanjing University, Nanjing 210093, and Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education of China, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Huangxian Ju
- Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education of China, Department of Chemistry, Nanjing University, Nanjing 210093, and Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education of China, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| |
Collapse
|
22
|
Chiu TC, Huang CC. Aptamer-functionalized nano-biosensors. SENSORS 2009; 9:10356-88. [PMID: 22303178 PMCID: PMC3267226 DOI: 10.3390/s91210356] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/03/2009] [Accepted: 12/03/2009] [Indexed: 12/12/2022]
Abstract
Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs), metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs). We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.
Collapse
Affiliation(s)
- Tai-Chia Chiu
- Department of Applied Science, National Taitung University, 684, Section 1, Chunghua Road, Taitung, 95002, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (T.C.C.); (C.C.H.); Tel.: +886-89-318855 Ext. 3801; Fax: +886-89-342-539
| | - Chih-Ching Huang
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, 2 Beining Road, Keelung, 20224, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (T.C.C.); (C.C.H.); Tel.: +886-89-318855 Ext. 3801; Fax: +886-89-342-539
| |
Collapse
|