Sakdaphetsiri K, Thaweeskulchai T, Schulte A. Rapid sub-micromolar amperometric enzyme biosensing with free substrate access but without nanomaterial signalling support: oxidase-based glucose detection as a proof-of-principle example.
Chem Commun (Camb) 2020;
56:7132-7135. [PMID:
32459232 DOI:
10.1039/d0cc01976c]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
High-sensitivity electrochemical glucose biosensing has so far been possible only through incorporation of nanomaterials into the glucose oxidase-(GOx) containing polymer layer on the detector surface. Here, as a conceptionally novel simplified option, pure gelatin thin films with covalently attached GOx were used to convert platinum (Pt) disk electrodes into rapidly responding amperometric glucose probes with a sub-micromolar limit of detection. The advanced enzymatic tools are easy to make and, as is crucial for a focus on waste minimization, green and sustainable, through restriction of sensor modification to readily available economical materials.
Collapse