1
|
Palinci Nagarajan M, Ramalingam M, Subbiah Arivuthilagam I, Paramaguru V, Rahman MM, Park J, Asiam FK, Lee B, Kim KP, Lee JJ. A Novel Ferrocene-Linked Thionine as a Dual Redox Mediator for the Electrochemical Detection of Dopamine and Hydrogen Peroxide. BIOSENSORS 2024; 14:448. [PMID: 39329823 PMCID: PMC11429643 DOI: 10.3390/bios14090448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
We introduce a novel dual redox mediator synthesized by covalently linking ferrocene dicarboxylic acid (FcDA) and thionine (TH) onto a pre-treated glassy carbon electrode. This unique structure significantly enhances the electro-oxidation of dopamine (DA) and the reduction of hydrogen peroxide (H2O2), offering a sensitive detection method for both analytes. The electrode exhibits exceptional sensitivity, selectivity, and stability, demonstrating potential for practical applications in biosensing. It facilitates rapid electron transfer between the analyte and the electrode surface, detecting H2O2 concentrations ranging from 1.5 to 60 µM with a limit of detection (LoD) of 0.49 µM and DA concentrations from 0.3 to 230 µM with an LoD of 0.07 µM. The electrode's performance was validated through real-sample analyses, yielding satisfactory results.
Collapse
Affiliation(s)
- Manikandan Palinci Nagarajan
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy & Materials Engineering, Dongguk University, 26 Phil-dong, 3-ga, Jung-gu, Seoul 04620, Republic of Korea
- Department of Applied Chemistry, Kyung Hee University, 1732 Deokyoung-daero, Giheung-gu, Yongin-si 17104, Republic of Korea
| | - Manikandan Ramalingam
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy & Materials Engineering, Dongguk University, 26 Phil-dong, 3-ga, Jung-gu, Seoul 04620, Republic of Korea
| | - Ilakeya Subbiah Arivuthilagam
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy & Materials Engineering, Dongguk University, 26 Phil-dong, 3-ga, Jung-gu, Seoul 04620, Republic of Korea
| | - Vishwa Paramaguru
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy & Materials Engineering, Dongguk University, 26 Phil-dong, 3-ga, Jung-gu, Seoul 04620, Republic of Korea
| | - Md Mahbubur Rahman
- Department of Energy Materials Science and Engineering, Konkuk University, Chungju 27478, Republic of Korea
| | - Jongdeok Park
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy & Materials Engineering, Dongguk University, 26 Phil-dong, 3-ga, Jung-gu, Seoul 04620, Republic of Korea
| | - Francis Kwaku Asiam
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy & Materials Engineering, Dongguk University, 26 Phil-dong, 3-ga, Jung-gu, Seoul 04620, Republic of Korea
| | - Byungjik Lee
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy & Materials Engineering, Dongguk University, 26 Phil-dong, 3-ga, Jung-gu, Seoul 04620, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Kyung Hee University, 1732 Deokyoung-daero, Giheung-gu, Yongin-si 17104, Republic of Korea
| | - Jae-Joon Lee
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy & Materials Engineering, Dongguk University, 26 Phil-dong, 3-ga, Jung-gu, Seoul 04620, Republic of Korea
| |
Collapse
|
2
|
Kaleeswarran P, Sakthi Priya T, Chen TW, Chen SM, Kokulnathan T, Arumugam A. Construction of a Copper Bismuthate/Graphene Nanocomposite for Electrochemical Detection of Catechol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10162-10172. [PMID: 35939572 DOI: 10.1021/acs.langmuir.2c01151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Binary metal oxides with carbon nanocomposites have received extensive attention as research hotspots in the electrochemistry field owing to their tunable properties and superior stability. This work illustrates the development of a facile sonochemical strategy for the synthesis of a copper bismuthate/graphene (GR) nanocomposite-modified screen-printed carbon electrode (CBO/GR/SPCE) for the electrochemical detection of catechol (CT). The formation of an as-prepared CBO/GR nanocomposite was comprehensively characterized. The electrochemical behavior of the CBO/GR/SPCE toward CT was investigated by voltammetry and amperometry techniques. The fabricated CBO/GR/SPCE manifests an excellent electrocatalytic performance toward CT with a lower peak potential and a higher current value compared to those of CBO/SPCE, GR/SPCE, and bare SPCE. It is attributed to enhanced electro-catalytic activity, synergetic effects, and good active sites of the CBO/GR nanocomposite. Under the electrochemical condition, the CBO/GR/SPCE displayed a wide linear sensing range, trace-level detection limit, acceptable sensitivity, and excellent selectivity. Furthermore, our proposed CBO/GR electrode was employed successfully for CT detection in water samples.
Collapse
Affiliation(s)
- Periyannan Kaleeswarran
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
- Department of Botany, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Thangavelu Sakthi Priya
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Thangavelu Kokulnathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ayyakannu Arumugam
- Department of Botany, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| |
Collapse
|
3
|
Hosseini M, Hashemian E, Salehnia F, Ganjali MR. Turn-on electrochemiluminescence sensing of melatonin based on graphitic carbon nitride nanosheets. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Lete C, López-Iglesias D, García-Guzmán JJ, Leau SA, Stanciu AE, Marin M, Palacios-Santander JM, Lupu S, Cubillana-Aguilera L. A Sensitive Electrochemical Sensor Based on Sonogel-Carbon Material Enriched with Gold Nanoparticles for Melatonin Determination. SENSORS (BASEL, SWITZERLAND) 2021; 22:120. [PMID: 35009659 PMCID: PMC8747361 DOI: 10.3390/s22010120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
In this work, the development of an electrochemical sensor for melatonin determination is presented. The sensor was based on Sonogel-Carbon electrode material (SNGCE) and Au nanoparticles (AuNPs). The low-cost and environmentally friendly SNGCE material was prepared by the ultrasound-assisted sonogel method. AuNPs were prepared by a chemical route and narrow size distribution was obtained. The electrochemical characterization of the SNGCE/AuNP sensor was carried out by cyclic voltammetry in the presence of a redox probe. The analytical performance of the SNGCE/AuNP sensor in terms of linear response range, repeatability, selectivity, and limit of detection was investigated. The optimized SNGCE/AuNP sensor displayed a low detection limit of 8.4 nM melatonin in synthetic samples assessed by means of the amperometry technique. The potential use of the proposed sensor in real sample analysis and the anti-matrix capability were assessed by a recovery study of melatonin detection in human peripheral blood serum with good accuracy.
Collapse
Affiliation(s)
- Cecilia Lete
- Electrochemistry-Corrosion Department, Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independentei, 022328 Bucharest, Romania; (S.-A.L.); (M.M.)
| | - David López-Iglesias
- Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Institute of Research on Electron Microscopy and Materials (IMEYMAT), University of Cadiz, República Saharaui, S/N. Puerto Real, 11510 Cadiz, Spain; (D.L.-I.); (J.J.G.-G.); (J.M.P.-S.); (L.C.-A.)
| | - Juan José García-Guzmán
- Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Institute of Research on Electron Microscopy and Materials (IMEYMAT), University of Cadiz, República Saharaui, S/N. Puerto Real, 11510 Cadiz, Spain; (D.L.-I.); (J.J.G.-G.); (J.M.P.-S.); (L.C.-A.)
| | - Sorina-Alexandra Leau
- Electrochemistry-Corrosion Department, Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independentei, 022328 Bucharest, Romania; (S.-A.L.); (M.M.)
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Gh. Street, 011061 Bucharest, Romania
| | - Adina Elena Stanciu
- Department of Carcinogenesis and Molecular Biology, Institute of Oncology Bucharest, 252 Fundeni, 022328 Bucharest, Romania;
| | - Mariana Marin
- Electrochemistry-Corrosion Department, Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independentei, 022328 Bucharest, Romania; (S.-A.L.); (M.M.)
| | - José Maria Palacios-Santander
- Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Institute of Research on Electron Microscopy and Materials (IMEYMAT), University of Cadiz, República Saharaui, S/N. Puerto Real, 11510 Cadiz, Spain; (D.L.-I.); (J.J.G.-G.); (J.M.P.-S.); (L.C.-A.)
| | - Stelian Lupu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Gh. Street, 011061 Bucharest, Romania
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Institute of Research on Electron Microscopy and Materials (IMEYMAT), University of Cadiz, República Saharaui, S/N. Puerto Real, 11510 Cadiz, Spain; (D.L.-I.); (J.J.G.-G.); (J.M.P.-S.); (L.C.-A.)
| |
Collapse
|
5
|
Mahboob S, Nivetha R, Gopinath K, Balalakshmi C, Al-Ghanim KA, Al-Misned F, Ahmed Z, Govindarajan M. Facile synthesis of gold and platinum doped titanium oxide nanoparticles for antibacterial and photocatalytic activity: A photodynamic approach. Photodiagnosis Photodyn Ther 2020; 33:102148. [PMID: 33346056 DOI: 10.1016/j.pdpdt.2020.102148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 01/20/2023]
Abstract
A simple method has been needed to synthesize nanoparticles (NPs) to avoid environmental pollution, an alternative chemical and physical method. This current study deals with phytosynthesis of gold (Au) and platinum (Pt) metal doped with titanium oxide (TiO2) NPs using Enterolobium saman bark extract. This extract plays a vital role in reducing and stabilizing Au and Pt doped into the TiO2 NPs lattices. Phytosynthesized samples were characterized by XRD, SEM, ED-XRF, TEM, FTIR, Raman, and UV-vis-DRS analyses. The metal doping effect has decreased bandgap energy and particle size, whereas increased conductivity for TiO2/M-Au and TiO2/M-Pt NPs compared to pristine TiO2 NPs. Phytosynthesized NPs were fabricated for dye-sensitized solar cell (DSSC) and photocatalytic behaviour against methylene blue (MB) dye was studied. An obtained result demonstrates that TiO2/M-Au NPs have excellent feasibility for applying DSSC and photocatalytic application due to particle size, crystallite size, absorption ability, and bandgap energy. Besides, synthesized samples were measured with cyclic voltammetry and impedance spectroscopy found that the metal doping is drifted the dielectric and increases that the metal doping is drifted the dielectric increases electro-catalytic of the TiO2. Different concentrations of all NPs were tested against Escherichia coli MTCC 40 and S. aureus ATCC 6633 bacteria by a well-diffusion method. The 10 mg concentration of all NPs showed better antibacterial activity. However, we believe that the proposed simple phytosynthesized method provides an efficient way to overcome the chemical and physical methods.
Collapse
Affiliation(s)
- Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Ravi Nivetha
- Center for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India
| | - Kasi Gopinath
- School of Materials and Energy, Southwest University, Chongqing, 400715, China.
| | - Chinnasamy Balalakshmi
- Department of Nanoscience and Technology, Alagappa University, Karaikudi, 630 003, Tamilnadu, India
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zubair Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam, 612 001, Tamil Nadu, India
| |
Collapse
|
6
|
Hanif M, Yasmeen K, Muhammad H, Shah F, Hussain S, Atta-ur-Rehman, Masab M, Ali ST, Tahiri IA. A Wide Bandgap Ag/MgO@Fe3O4 Nanocomposite as Magnetic Sorbent for Cd(II) in Water Samples. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666191205102628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The magnetic nanocomposites are very important as a reusable sorbents for
the extraction of Cd(II) and other toxic metals from water samples.
Methods:
The Ag/MgO@Fe3O4 nanocomposite was synthesized by the coprecipitation method and
characterized by the XRD, EDX, SEM, UV-vis spectroscopy and FTIR. This nanocomposite was
used to extract Cd(II) from water samples prior to its quantitative analysis with FAAS. Different variables,
i.e. pH, temperature, amount of nanosorbent, adsorption/desorption and dilution were optimized.
Results:
The method was successfully applied to determine Cd(II) in real water samples with
excellent recoveries (98%). The present method has lower detection (0.29) and quantification limit
(0.97 ng mL-1).
Conclusions:
The Ag/MgO@Fe3O4 nanocomposite based magnetic extraction is a simple, fast, reproducible,
less expansive and efficient technique for the Cd(II) extraction in water samples. The developed
sorbent can be recycled and reused (20 times).
Collapse
Affiliation(s)
- Muddasir Hanif
- Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Kousar Yasmeen
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e-Iqbal Campus, Karachi- 75300, Pakistan
| | - Haji Muhammad
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e-Iqbal Campus, Karachi- 75300, Pakistan
| | - Faheem Shah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060-Abbottabad, Pakistan
| | - Saqib Hussain
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e-Iqbal Campus, Karachi- 75300, Pakistan
| | - Atta-ur-Rehman
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e-Iqbal Campus, Karachi- 75300, Pakistan
| | - Muhammad Masab
- Department of Chemistry, Government Degree College Hangu, Hangu District, KPK, Pakistan
| | - Syed Tahir Ali
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e-Iqbal Campus, Karachi- 75300, Pakistan
| | - Iftikhar Ahmad Tahiri
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e-Iqbal Campus, Karachi- 75300, Pakistan
| |
Collapse
|
7
|
Soltani N, Tavakkoli N, Shahdost-Fard F, Salavati H, Abdoli F. A carbon paste electrode modified with Al 2O 3-supported palladium nanoparticles for simultaneous voltammetric determination of melatonin, dopamine, and acetaminophen. Mikrochim Acta 2019; 186:540. [PMID: 31317272 DOI: 10.1007/s00604-019-3541-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/22/2019] [Indexed: 11/26/2022]
Abstract
The authors have modified a carbon paste electrode with Al2O3-supported palladium nanoparticles (PdNP@Al2O3) to obtain a sensor for simultaneous voltammetric determination of melatonin (MT), dopamine (DA) and acetaminophen (AC). The PdNP@Al2O3 was characterized by scanning electron microscopy and energy-dispersive X-ray spectra. The sensor can detect DA, AC, MT and their mixtures by giving distinct signals at working voltages of typically 236, 480 and 650 mV (vs. Ag/AgCl), respectively. Differential pulse voltammetric peak currents of DA, AC and MT increase linearly in the 50 nmol L-1 - 1.45 mmol L-1, 40 nmol L-1 -1.4 mmol L-1, and 6.0 nmol L-1 - 1.4 mmol L-1 concentration ranges. The limits of detection are 36.5 nmol L-1 for DA, 36.5 nmol L-1 for AC, and 21.6 nmol L-1 for MT. The sensor was successfully used to detect the analytes in (spiked) human serum and drug samples. Graphical abstract Schematic presentation of Al2O3-supported palladium nanoparticles (PdNP@Al2O3) for modification of a carbon paste electrode (CPE) to develop a voltammetric sensor for the simultaneous determination of dopamine (DA), acetaminophen (AC) and melatonin (MT).
Collapse
Affiliation(s)
- Nasrin Soltani
- Chemistry Department, Payame Noor University, Tehran, 19395-4697, Iran.
| | - Nahid Tavakkoli
- Chemistry Department, Payame Noor University, Tehran, 19395-4697, Iran
| | - Faezeh Shahdost-Fard
- Department of Chemistry, University of Ilam, Ilam, 69315-516, Iran
- Faculty of Medicine, Ilam University of Medical Sciences, Ilam, 69391-77143, Iran
| | - Hossein Salavati
- Chemistry Department, Payame Noor University, Tehran, 19395-4697, Iran
| | - Fatemeh Abdoli
- Chemistry Department, Payame Noor University, Tehran, 19395-4697, Iran
| |
Collapse
|
8
|
Biocompatible properties of nano-drug carriers using TiO 2-Au embedded on multiwall carbon nanotubes for targeted drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:589-601. [PMID: 29853129 DOI: 10.1016/j.msec.2018.04.094] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 01/09/2023]
Abstract
Nanomaterial-based drug carriers have become a hot spot of research at the interface of nanotechnology and biomedicine because they allow efficient loading, targeted delivery, controlled release of drugs, and therefore are promising for biomedical applications. The current study made an attempt to decorate the multiwalled carbon nanotubes (MWCNT) with titanium dioxide‑gold nanoparticles in order to enhance the biocompatibility for doxorubicin (DOX) delivery. The successful synthesis of nano drug carrier (NDC) was confirmed by XRD, XPS and UV-Visible spectroscopy. FESEM and TEM revealed that the morphology of NDC can be controlled by manipulating the reaction duration, MWCNT concentration and TiO2-Au source concentration. Results showed that TiO2 and Au nanoparticles were well coated on MWCNT. NDC had finely tuned biocompatible properties, as elucidated by hemolytic and antimicrobial assays. NDC also showed a high antioxidant potential, 80.7% expressed as ascorbic acid equivalents. Commercial DOX drug was utilized to treat A549 and MCF7 cancer cell lines showing improved efficiency by formulating it with NDC, which selectively delivered at the pH 5.5 with drug loading capacity of 0.45 mg/mL. The drug releasing capacity achieved by NDC was 90.66% for 10 h, a performance that far encompasses a wide number of current literature reports.
Collapse
|