1
|
Brycht M, Poltorak L, Baluchová S, Sipa K, Borgul P, Rudnicki K, Skrzypek S. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1017-1108. [PMID: 35968923 DOI: 10.1080/10408347.2022.2106117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.
Collapse
Affiliation(s)
- Mariola Brycht
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Lukasz Poltorak
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Simona Baluchová
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czechia
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Karolina Sipa
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Borgul
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Konrad Rudnicki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Sławomira Skrzypek
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Paziewska-Nowak A, Urbanowicz M, Sadowska K, Pijanowska DG. DNA-based molecular recognition system for lactoferrin biosensing. Int J Biol Macromol 2023; 253:126747. [PMID: 37699464 DOI: 10.1016/j.ijbiomac.2023.126747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
The paper describes the development of a novel DNA oligonucleotide-based affinity bioreceptor that binds to lactoferrin, a glycoprotein-type immunomodulator. The research was performed using surface plasmon resonance method to investigate affinity of various types of oligonucleotides to the target protein. The 72 base pair-long 5'[(TAGAGGATCAAA)AAA]4TAGAGGATCAAA3' sequence with the highest affinity to lactoferrin was selected for further investigations. Kinetic analysis of the interaction between selected DNA and lactoferrin provided rate and equilibrium constants: ka = (2.49 ± 0.03)∙104 M-1∙s-1, kd = (1.89 ± 0.02)∙10-3 s-1, KA = (0.13 ± 0.05)∙108 M-1, and KD = (7.61 ± 0.18)∙10-8 M. Thermodynamic study conducted to determine the ΔH0, ΔS0, and ΔG0 for van't Hoff characteristic in the temperature range of 291.15-305.15 K, revealed the complex formation as endothermic and entropically driven. The chosen DNA sequence's selectivity towards lactoferrin was confirmed with interferents' response constituting <3 % of the response to lactoferrin. SPR analysis justified utility of the designed DNA oligonucleotide for Lf determination, with LOD of 4.42∙10-9 M. Finally, the interaction between lactoferrin and DNA was confirmed by electrochemical impedance spectroscopy, providing the basis for further quantitative assay of lactoferrin using the developed DNA-based bioreceptor. The interactions were performed under immobilized DNA ligand conditions, thus reflecting the sensor's surface, which facilitates their transfer to other label-free biosensor technologies.
Collapse
Affiliation(s)
- Agnieszka Paziewska-Nowak
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 St., 02-109 Warsaw, Poland.
| | - Marcin Urbanowicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 St., 02-109 Warsaw, Poland
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 St., 02-109 Warsaw, Poland
| | - Dorota Genowefa Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 St., 02-109 Warsaw, Poland
| |
Collapse
|
3
|
Evtugyn GA, Porfireva AV, Belyakova SV. Electrochemical DNA sensors for drug determination. J Pharm Biomed Anal 2022; 221:115058. [PMID: 36179503 DOI: 10.1016/j.jpba.2022.115058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
In this review, recent achievements in the development of the DNA biosensors developed for the drug determination have been presented with particular emphasis to the main principles of their assembling and signal measurement approaches. The design of the DNA sensors is considered with characterization of auxiliary components and their necessity for the biosensor operation. Carbon nanomaterials, metals and their complexes as well as electropolymerized polymers are briefly described in the assembly of DNA sensors. The performance of the DNA sensors is summarized within 2017-2022 for various drugs and factors influencing the sensitivity and selectivity of the response are discussed. Special attention is paid to the mechanism of the signal generation and possible drawbacks in the analysis of real samples.
Collapse
Affiliation(s)
- G A Evtugyn
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation; Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation.
| | - A V Porfireva
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - S V Belyakova
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| |
Collapse
|
4
|
DNA-Polylactide Modified Biosensor for Electrochemical Determination of the DNA-Drugs and Aptamer-Aflatoxin M1 Interactions. SENSORS 2019; 19:s19224962. [PMID: 31739501 PMCID: PMC6891816 DOI: 10.3390/s19224962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
DNA sensors were assembled by consecutive deposition of thiacalix[4]arenes bearing oligolactic fragments, poly(ethylene imine), and DNA onto the glassy carbon electrode. The assembling of the layers was monitored with scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The configuration of the thiacalix[4]arene core determined self-assembling of the polymeric species to the nano/micro particles with a size of 70–350 nm. Depending on the granulation, the coatings show the accumulation of a variety of DNA quantities, charges, and internal pore volumes. These parameters were used to optimize the DNA sensors based on these coatings. Thus, doxorubicin was determined to have limits of detection of 0.01 nM (cone configuration), 0.05 nM (partial cone configuration), and 0.10 nM (1,3-alternate configuration of the macrocycle core). Substitution of native DNA with aptamer specific to aflatoxin M1 resulted in the detection of the toxin in the range of 20 to 200 ng/L (limit of detection 5 ng/L). The aptasensor was tested in spiked milk samples and showed a recovery of 80 and 85% for 20 and 50 ng/L of the aflatoxin M1, respectively.
Collapse
|
5
|
Porfireva A, Vorobev V, Babkina S, Evtugyn G. Electrochemical Sensor Based on Poly(Azure B)-DNA Composite for Doxorubicin Determination. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2085. [PMID: 31060322 PMCID: PMC6539792 DOI: 10.3390/s19092085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/23/2023]
Abstract
A new voltammetric DNA sensor has been developed for doxorubicin determination on the platform of a glassy carbon electrode (GCE) covered with electropolymerized Azure B film and physically adsorbed native DNA. The redox properties of polymeric Azure B were monitored at various pH and scan rates. DNA application decreased the peak currents related to polymeric and monomeric forms of the dye, whereas incubation in doxorubicin solution partially restored the peaks in accordance with the drug and DNA concentration. The relative shift of the cathodic peak current caused by doxorubicin depended on the nominal DNA concentration and its application mode. In optimal conditions, the DNA sensor makes it possible to determine between 0.1 μM to 0.1 nM doxorubicin (limit of detection 7×10-11 M). The DNA sensor was tested on commercial doxorubicin formulations and on artificial samples the mimicked electrolyte content of human serum.
Collapse
Affiliation(s)
- Anna Porfireva
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia.
| | - Vyatseslav Vorobev
- Interdisciplinary Center of Analytical Microscopy of Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia.
| | - Sofya Babkina
- Analytical Chemistry Department of the Lomonosov' Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 86 Vernadsky Prospect, Moscow 119571, Russia.
| | - Gennady Evtugyn
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia.
| |
Collapse
|
6
|
Electrochemical DNA Sensors with Layered Polyaniline-DNA Coating for Detection of Specific DNA Interactions. SENSORS 2019; 19:s19030469. [PMID: 30678376 PMCID: PMC6387217 DOI: 10.3390/s19030469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
A DNA sensor has been proposed on the platform of glassy carbon electrode modified with native DNA implemented between two electropolymerized layers of polyaniline. The surface layer was assembled by consecutive stages of potentiodynamic electrolysis, DNA drop casting, and second electrolysis, which was required for capsulation of the DNA molecules and prevented their leaching into the solution. Surface layer assembling was controlled by cyclic voltammetry, electrochemical impedance spectroscopy, atomic force, and scanning electron microscopy. For doxorubicin measurement, the DNA sensor was first incubated in the Methylene blue solution that amplified signal due to DNA intercalation and competition with the doxorubicin molecules for the DNA binding sites. The charge transfer resistance of the inner layer interface decreased with the doxorubicin concentration in the range from 1.0 pM to 0.1 μM (LOD 0.6 pM). The DNA sensor was tested for the analysis of spiked artificial urine samples and showed satisfactory recovery in concentration range of 0.05⁻10 μM. The DNA sensor developed can find application in testing of antitumor drugs and some other DNA damaging factors.
Collapse
|
7
|
Bhatnagar I, Mahato K, Ealla KKR, Asthana A, Chandra P. Chitosan stabilized gold nanoparticle mediated self-assembled gliP nanobiosensor for diagnosis of Invasive Aspergillosis. Int J Biol Macromol 2017; 110:449-456. [PMID: 29253546 DOI: 10.1016/j.ijbiomac.2017.12.084] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/20/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023]
Abstract
Diagnosis of Invasive Aspergillosis (IA) casused by Aspergillus fumigatus in miniaturized setting is challenging with great importance in human health. In this direction, we have designed a sensitive electrochemical nanobiosensor for diagnosis of IA through detecting the virulent glip target gene (glip-T) in a miniaturized experimetal setting. The sensor probe was fabricated using 1,6-Hexanedithiol and chitosan stabilized gold nanoparticle mediated self-assembly of glip probes (glip-P) on gold electrode. It was characterized by UV-visible spectroscopy, cyclic voltametry and electrochemical impedance spectroscopy. The ability of sensor to detect glip-T was analysed based on the hybridyzation reaction and the signal obtained using toluidine blue as indicator molecule. Analytical parameters were optimized in terms of glip-P concentration, temperature, reaction time, and concentration of toluidine blue. The biosensor showed the dynamic range between 1 × 10-14- 1 × 10-2 M with the detection limit of 0.32 ± 0.01 × 10-14(RSD < 5.2%). The regeneration of biosensor was evaluated and the interference due to non-target oligonucleotide sequences was evaluated individualy as well as in mixed sample to validate the high selectivity of the designed sensor. The stability of the designed sensor was examined and practical applicability of biosensor was tested by detecting glip-T in real sample environment.
Collapse
Affiliation(s)
- Ira Bhatnagar
- Clinical Research Facility, Medical Biotechnology Complex, CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.
| | - Kuldeep Mahato
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | | | - Amit Asthana
- Clinical Research Facility, Medical Biotechnology Complex, CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Pranjal Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|