1
|
Royero-Bermeo WY, Sánchez-Jiménez MM, Ospina-Villa JD. Aptamers as innovative tools for malaria diagnosis and treatment: advances and future perspectives. Biol Methods Protoc 2025; 10:bpaf025. [PMID: 40223817 PMCID: PMC11992340 DOI: 10.1093/biomethods/bpaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
Malaria, caused by Plasmodium spp. parasites (P. vivax, P. falciparum, P. ovale, P. malariae, and P. knowlesi), remains a significant global health challenge, with 263 million cases and 567 000 deaths reported in 2023. Diagnosis in endemic regions relies on clinical symptoms, microscopy, and rapid diagnostic tests. Although widely used, microscopy suffers from variability in sensitivity due to operator expertise and low parasitemia. Rapid diagnostic tests, which are favored for their simplicity and speed, show high sensitivity for P. vivax but reduced accuracy (80%) for P. falciparum, which is attributed to deletions in histidine-rich protein 2/3 proteins caused by Pfhrp2/3 gene mutations. Innovative diagnostic and therapeutic technologies, such as aptamers, are gaining attention. Aptamers are single-stranded oligonucleotides that bind specifically to target molecules with high affinity. They have shown promise in disease diagnosis, therapeutics, and environmental monitoring. In malaria, aptamers are being explored as highly sensitive and specific diagnostic tools capable of detecting Plasmodium proteins across all infection stages. Additionally, they offer potential for novel therapeutic strategies, enhancing disease control and treatment options. These advancements highlight the use of aptamers as versatile and innovative approaches for addressing malaria and other infectious diseases. A comprehensive literature search was conducted in the PubMed, ScienceDirect, and SCOPUS databases via the keywords "Aptamers" AND "Malaria" AND "Aptamers" AND "Plasmodium." Additionally, patent searches were carried out in the LENS, WIPO, and LATIPAT databases via the same search terms. In total, 88 relevant articles were selected for this review, providing a comprehensive and evidence-based foundation to discuss emerging aptamer technologies for malaria diagnosis and treatment. The proteins commonly employed in rapid malaria diagnostic tests, such as histidine-rich protein 2, P. lactate dehydrogenase, and prostaglandin dehydrogenase, are highlighted. However, the identification of new targets, such as HMIGB1 and DRX1 (1-deoxy-d-xylulose-5-phosphate reductoisomerase), and the detection of whole cells have also been emphasized.
Collapse
Affiliation(s)
- Wendy Yulieth Royero-Bermeo
- Instituto Colombiano de Medicina Tropical, Universidad CES, Carrera 43A 52 S-99, Sabaneta, Antioquia, 055450, Colombia
| | - Miryan Margot Sánchez-Jiménez
- Instituto Colombiano de Medicina Tropical, Universidad CES, Carrera 43A 52 S-99, Sabaneta, Antioquia, 055450, Colombia
| | - Juan David Ospina-Villa
- Instituto Colombiano de Medicina Tropical, Universidad CES, Carrera 43A 52 S-99, Sabaneta, Antioquia, 055450, Colombia
| |
Collapse
|
2
|
Monisha S, Sain A, Jayaprakash NS, Senthil Kumar A. Facile Antibody Immobilization on a Redox-Active Thionine-Functionalized Carbon Nanofiber Surface for Rapid Electrochemical Immunosensing of a Bioengineered Malaria Protein Biomarker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4446-4456. [PMID: 39945766 DOI: 10.1021/acs.langmuir.4c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Antibodies that target the Plasmodium falciparum histidine-rich protein-II biomarker (PfHRP-II) are being used in rapid diagnostic tests (RDTs) of malaria. PfHRP-II levels associated with severe malaria are typically greater than 100 ng mL-1. Unfortunately, genetic variations within the PfHRP-II gene can reduce the reliability of these RDTs by affecting both sensitivity and specificity. In this study, we developed in-house antibodies against conserved C-terminal 105 amino acids of the PfHRP-II biomarker to enhance malaria diagnosis using an electrochemical immunosensor technique. Unlike conventional electrochemical immunosensor assays, which use solution-phase enzyme-transducer systems like ferricyanide that suffer from poor current sensitivity and false positives, we constructed a heterogeneous electrochemical immunosensor. This sensor employs highly redox-active thionine (Th) immobilized on a carbon nanofiber (CNF)-based chemically modified electrode (CME) platform. The prepared CME was characterized using several physicochemical techniques, revealing that the oxygen-rich functional groups of CNF serve as active sites for effective antibody binding and immunosensing. Sequential modifications were performed using 2 μL volumes of the polyclonal antibody, antigen (PfHRP-II), bioengineered monoclonal antibody, and horseradish peroxidase-coupled secondary antibody (Ab2HRP), with each step requiring an incubation time of 3-5 min, resulting in a total working time of 30 ± 5 min. The immunosensor demonstrated excellent sensing signals within a range of 250 pg/mL to 100 ng/mL PfHRP-II, with a high current sensitivity of 0.813 μA/ng mL-1. Control experiments with healthy rabbit and human blood serum samples showed no current response, ruling out false positive signals from the assay. For real-time application, high-performance electrochemical immunosensing of rabbit and human blood serum samples spiked with PfHRP-II was demonstrated with high accuracy.
Collapse
Affiliation(s)
- Sugumar Monisha
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide and Green Technology Research Centre, Vellore Institute of Technology University, Vellore, Tamil Nadu 632 014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University,Vellore, Tamil Nadu 632 014, India
| | - Avtar Sain
- Centre for Bio Separation Technology (CBST), Vellore Institute of Technology University, Vellore, Tamil Nadu 632 014, India
| | - N S Jayaprakash
- Centre for Bio Separation Technology (CBST), Vellore Institute of Technology University, Vellore, Tamil Nadu 632 014, India
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide and Green Technology Research Centre, Vellore Institute of Technology University, Vellore, Tamil Nadu 632 014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University,Vellore, Tamil Nadu 632 014, India
| |
Collapse
|
3
|
Ogunmolasuyi AM, Adewoyin MA. Microfluidic device: A versatile biosensor platform to multiplex aptamer-based detection of malaria biomarkers. Cell Biochem Funct 2024; 42:e4104. [PMID: 39118353 DOI: 10.1002/cbf.4104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Plasmodium falciparum malaria remains a dominant infectious disease that affects Africa than the rest of the world, considering its associated cases and death rates. It's a febrile illness that produces several reliable biomarkers, for example, P. falciparum lactate dehydrogenase (PfLDH), P. falciparum Plasmodium glutamate dehydrogenase (PfGDH), and P. falciparum histidine-rich proteins (HRP-II) in blood circulatory system that can easily be employed as targets in rapid diagnostic tests (RDTs). In recent times, several DNA aptamers have been developed via SELEX technology to detect some specific malaria biomarkers (PfLDH, PvLDH, HRP-II, PfGDH) in a biosensor mode with good binding affinity properties to overcome the trend of cross-reactivity, limited sensitivity and stability problems that have been observed with immunodiagnostics. In this review, we summarized existing diagnostic methods and relevant biomarkers to suggest promising approaches to develop sensitive and species-specific multiplexed diagnostic devices enabling effective detection of malaria in complex biological matrices and surveillance in the endemic region.
Collapse
Affiliation(s)
| | - Mary A Adewoyin
- Department of Biological Sciences, Anchor University, Lagos, Nigeria
| |
Collapse
|
4
|
Baruah S, Betty CA. Point of care devices for detection of Covid-19, malaria and dengue infections: A review. Bioelectrochemistry 2024; 158:108704. [PMID: 38593574 DOI: 10.1016/j.bioelechem.2024.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Need for affordable, rapid and user-friendly point of care (POC) devices are increasing exponentially for strengthening the health care system in primary care as well as for self- monitoring in routine analysis. In addition to routine analysis of glucose, Covid-19 type fast spreading, infectious diseases have created further push for exploring rapid, cost-effective and self-monitoring diagnostic devices. Successful implementation of self-monitoring devices for Covid -19 has been realized. However, not much success has been realized for malaria and dengue which are two fatal diseases that affect the population in underdeveloped and developing countries. To monitor the presence of parasites for these diseases, rapid, onsite monitoring devices are still being explored. In this review, we present a review of the research carried out on electrochemical POC devices for monitoring infectious diseases such as Covid-19, malaria and dengue.
Collapse
Affiliation(s)
- Susmita Baruah
- Nanoscience and Soft Matter Laboratory, Department of Physics, Tezpur University, PO: Napaam, Tezpur 784028, Assam, India
| | - C A Betty
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
5
|
Mili M, Bachu V, Kuri PR, Singh NK, Goswami P. Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophys Chem 2024; 309:107218. [PMID: 38547671 DOI: 10.1016/j.bpc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.
Collapse
Affiliation(s)
- Malaya Mili
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Pooja Rani Kuri
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Kalita N, Gogoi S, Minteer SD, Goswami P. Advances in Bioelectrode Design for Developing Electrochemical Biosensors. ACS MEASUREMENT SCIENCE AU 2023; 3:404-433. [PMID: 38145027 PMCID: PMC10740130 DOI: 10.1021/acsmeasuresciau.3c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.
Collapse
Affiliation(s)
- Nabajyoti Kalita
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudarshan Gogoi
- Department
of Chemistry, Sadiya College, Chapakhowa, Assam 786157, India
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pranab Goswami
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Brosseau NE, Vallée I, Mayer-Scholl A, Ndao M, Karadjian G. Aptamer-Based Technologies for Parasite Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020562. [PMID: 36679358 PMCID: PMC9867382 DOI: 10.3390/s23020562] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 05/30/2023]
Abstract
Centuries of scientific breakthroughs have brought us closer to understanding and managing the spread of parasitic diseases. Despite ongoing technological advancements in the detection, treatment, and control of parasitic illnesses, their effects on animal and human health remain a major concern worldwide. Aptamers are single-stranded oligonucleotides whose unique three-dimensional structures enable them to interact with high specificity and affinity to a wide range of targets. In recent decades, aptamers have emerged as attractive alternatives to antibodies as therapeutic and diagnostic agents. Due to their superior stability, reusability, and modifiability, aptamers have proven to be effective bioreceptors for the detection of toxins, contaminants, biomarkers, whole cells, pathogens, and others. As such, they have been integrated into a variety of electrochemical, fluorescence, and optical biosensors to effectively detect whole parasites and their proteins. This review offers a summary of the various types of parasite-specific aptamer-based biosensors, their general mechanisms and their performance.
Collapse
Affiliation(s)
- Noah Emerson Brosseau
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Isabelle Vallée
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Momar Ndao
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Grégory Karadjian
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
8
|
Application of egg yolk IgY on carboxylated polypyrrole films for impedimetric detection of PfHRP2 antigen. Bioelectrochemistry 2022; 148:108273. [DOI: 10.1016/j.bioelechem.2022.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
|
9
|
Majdinasab M, Marty JL. Recent Advances in Electrochemical Aptasensors for Detection of Biomarkers. Pharmaceuticals (Basel) 2022; 15:995. [PMID: 36015143 PMCID: PMC9412480 DOI: 10.3390/ph15080995] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
The early diagnosis of diseases is of great importance for the effective treatment of patients. Biomarkers are one of the most promising medical approaches in the diagnosis of diseases and their progress and facilitate reaching this goal. Among the many methods developed in the detection of biomarkers, aptamer-based biosensors (aptasensors) have shown great promise. Aptamers are promising diagnostic molecules with high sensitivity and selectivity, low-cost synthesis, easy modification, low toxicity, and high stability. Electrochemical aptasensors with high sensitivity and accuracy have attracted considerable attention in the field of biomarker detection. In this review, we will summarize recent advances in biomarker detection using electrochemical aptasensors. The principles of detection, sensitivity, selectivity, and other important factors in aptasensor performance are investigated. Finally, advantages and challenges of the developed aptasensors are discussed.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Jean Louis Marty
- Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
10
|
Nate Z, Gill AA, Chauhan R, Karpoormath R. Recent progress in electrochemical sensors for detection and quantification of malaria. Anal Biochem 2022; 643:114592. [DOI: 10.1016/j.ab.2022.114592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/30/2022]
|
11
|
Lo Y, Cheung YW, Wang L, Lee M, Figueroa-Miranda G, Liang S, Mayer D, Tanner JA. An electrochemical aptamer-based biosensor targeting Plasmodium falciparum histidine-rich protein II for malaria diagnosis. Biosens Bioelectron 2021; 192:113472. [PMID: 34271397 DOI: 10.1016/j.bios.2021.113472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022]
Abstract
Malaria is an infectious disease caused by parasitic protozoans from the genus Plasmodium, with the species P. falciparum causing the highest number of deaths worldwide. Rapid diagnostic tests (RDTs) have become critical in the management of malaria, but current RDTs that detect P. falciparum are primarily antibody-based, which can have drawbacks in cost and robustness. Here, we report the development of an electrochemical aptamer-based (E-AB) biosensing alternative. Through selective evolution of ligands by exponential enrichment, we identify DNA aptamers that bind specifically to P. falciparum histidine-rich protein II (PfHRP2). The aptamer is modified with a methylene blue reporter and attached to a gold sensor surface for square-wave voltammetry interrogation. Through this method we are able to quantify PfHRP2 in human serum with an LOD of 3.73 nM. We further demonstrate the biosensor is stable in serum buffers and reusable for multiple detection rounds. These findings provide a promising alternative to conventional PfHRP2 detection for malaria diagnosis, while also expanding the capabilities of E-AB biosensors.
Collapse
Affiliation(s)
- Young Lo
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yee-Wai Cheung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Megan Lee
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Gabriela Figueroa-Miranda
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Shaolin Liang
- "Mobile Health" Ministry of Education-China Mobile Joint Laboratory, Xiangya Hospital, Central South University, Changsha, China; School of Medicine, Northwest University, Xi'an, China
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Julian Alexander Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), Hong Kong, China.
| |
Collapse
|
12
|
Cordeiro TAR, de Resende MAC, Moraes SCDS, Franco DL, Pereira AC, Ferreira LF. Electrochemical biosensors for neglected tropical diseases: A review. Talanta 2021; 234:122617. [PMID: 34364426 DOI: 10.1016/j.talanta.2021.122617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/26/2022]
Abstract
A group of infectious and parasitic diseases with prevalence in tropical and subtropical regions of the planet, especially in places with difficult access, internal conflicts, poverty, and low visibility from the government and health agencies are classified as neglected tropical diseases. While some well-intentioned isolated groups are making the difference on a global scale, the number of new cases and deaths is still alarming. The development and employment of low-cost, miniaturized, and easy-to-use devices as biosensors could be the key to fast diagnosis in such areas leading to a better treatment to further eradication of such diseases. Therefore, this review contains useful information regarding the development of such devices in the past ten years (2010-2020). Guided by the updated list from the World Health Organization, the work evaluated the new trends in the biosensor field applied to the early detection of neglected tropical diseases, the efficiencies of the devices compared to the traditional techniques, and the applicability on-site for local distribution. So, we focus on Malaria, Chagas, Leishmaniasis, Dengue, Zika, Chikungunya, Schistosomiasis, Leprosy, Human African trypanosomiasis (sleeping sickness), Lymphatic filariasis, and Rabies. Few papers were found concerning such diseases and there is no available commercial device in the market. The works contain information regarding the development of point-of-care devices, but there are only at proof of concepts stage so far. Details of electrode modification and construction of electrochemical biosensors were summarized in Tables. The demand for the eradication of neglected tropical diseases is increasing. The use of biosensors is pivotal for the cause, but appliable devices are scarce. The information present in this review can be useful for further development of biosensors in the hope of helping the world combat these deadly diseases.
Collapse
Affiliation(s)
- Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | | - Simone Cristina Dos Santos Moraes
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil.
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João Del-Rei, São João Del-Rei, Brazil.
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil.
| |
Collapse
|
13
|
Dip Gandarilla AM, Regiart M, Bertotti M, Correa Glória J, Morais Mariuba LA, Ricardo Brito W. One-step enzyme-free dual electrochemical immunosensor for histidine-rich protein 2 determination. RSC Adv 2020; 11:408-415. [PMID: 35423017 PMCID: PMC8691096 DOI: 10.1039/d0ra08729g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
In the present work, we describe a novel one-step enzyme-free dual electrochemical immunosensor for the determination of histidine-rich protein 2 (Ag-PfHRP2), a specific malaria biomarker. A gold electrode (GE) was functionalized with the PfHRP2 antibody (Ab-PfHRP2) using dihexadecyl phosphate (DHP) polymer as an immobilization platform. The Ab-PfHRP2/DHP/GE sensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The developed immunosensor was employed for indirect Ag-PfHRP2 determination by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The linear range was 10-400 ng mL-1 and 10-500 ng mL-1 for EIS and DPV, while the limit of detection was 3.3 ng mL-1 and 2.8 ng mL-1, respectively. The electrochemical immunosensor was successfully applied for Ag-PfHRP2 determination in human serum samples. Its performance was compared with an ELISA test, and good correspondence was achieved. The coefficients of intra- and inter-assay variations were less than 5%. The electrochemical immunosensor is a useful and straightforward tool for in situ malaria biomarker determination.
Collapse
Affiliation(s)
| | - Matias Regiart
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo São Paulo 05508-000 Brazil +55 11 982885489
| | - Mauro Bertotti
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo São Paulo 05508-000 Brazil +55 11 982885489
| | - Juliane Correa Glória
- Leônidas and Maria Deane Institute, Oswaldo Cruz Foundation Manaus Amazonas 69057-070 Brazil
| | | | - Walter Ricardo Brito
- Department of Chemistry, Federal University of Amazonas Manaus Amazonas 69067-005 Brazil +55 92 981379920
| |
Collapse
|
14
|
Kantor AG, Markwalter CF, Nourani A, Wright DW. An antibody-free dual-biomarker rapid enrichment workflow (AnDREW) improves the sensitivity of malaria rapid diagnostic tests. Anal Biochem 2020; 612:114020. [PMID: 33207186 DOI: 10.1016/j.ab.2020.114020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 11/15/2022]
Abstract
Rapid diagnostic tests (RDTs) are critical to the success of malaria elimination campaigns. These tests are rapid, user-friendly, and field-deployable to resource-limited regions. However, RDTs demonstrate poor sensitivity because they can only tolerate a small (5 μL) volume of blood, which limits the amount of protein biomarker delivered to the test. We have developed the Antibody-free Dual-biomarker Rapid Enrichment Workflow (AnDREW) for purifying histidine-rich protein 2 (HRP2) and Plasmodium lactate dehydrogenase (PLDH) from large volume (150 μL) blood samples. We used Zn(II)NTA and aptamer-conjugated magnetic beads to capture HRP2 and PLDH, respectively. Both biomarkers were then eluted into RDT-compatible volumes using ethylene diamine tetraacetic acid (EDTA). We optimized both bead conjugates individually by enzyme-linked immunosorbent assays (ELISAs) and then combined the optimized capture and elution assays for both biomarkers to produce the AnDREW. The AnDREW-enhanced RDTs exhibited a 11-fold and 9-fold improvement in analytical sensitivity for detection of HRP2 and PLDH, respectively, when compared to unenhanced RDTs. Moreover, the limit of detection for PLDH was improved 11-fold for the AnDREW-enhanced RDTs (3.80 parasites/μL) compared to unenhanced RDTs (42.31 parasites/μL). Importantly, the AnDREW utilizes a pan-specific PLDH aptamer and improves upon existing methods by eluting both biomarkers without complexed antibodies.
Collapse
Affiliation(s)
- Andrew G Kantor
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | | | - Armin Nourani
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
15
|
Figueroa-Miranda G, Wu C, Zhang Y, Nörbel L, Lo Y, Tanner JA, Elling L, Offenhäusser A, Mayer D. Polyethylene glycol-mediated blocking and monolayer morphology of an electrochemical aptasensor for malaria biomarker detection in human serum. Bioelectrochemistry 2020; 136:107589. [PMID: 32679336 DOI: 10.1016/j.bioelechem.2020.107589] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022]
Abstract
Better approaches are critically needed for in situ point-of-care diagnostic biosensors that enable primary care physicians, or even individual patients, to directly analyze biological fluids without complicated sample pretreatments. Additional purification steps consume time, consume reagents, often require other equipment, and can introduce false-negative results. Biosensors have been modified with blocking molecules to reduce biofouling; however, the effectiveness relies on their chemical composition and morphology. Here, we used a polyethylene glycol film to suppress unspecific binding from human serum on an electrochemical malaria aptasensor. A detailed study of the variation of the chemical and morphological composition of the aptamer/polyethylene glycol mixed monolayer as a function of incubation time was conducted. Higher resistance to matrix biofouling was found for polyethylene glycol than for hydrophobic alkanethiol films. The best sensor performance was observed for intermediate polyethylene glycol immobilization times. With prolonged incubation, phase separation of aptamer, and polyethylene glycol molecules locally increased the aptamer density and thereby diminished the analyte binding capability. Remarkably, polyethylene glycols do not affect the aptasensor sensitivity but enhance the complex matrix tolerance, the dynamic range, and the limit of detection. Careful tuning of the blocking molecule immobilization is crucial to achieving high aptasensor performance and biofouling resistance.
Collapse
Affiliation(s)
- Gabriela Figueroa-Miranda
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany; Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Changtong Wu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Yuting Zhang
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lena Nörbel
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Young Lo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Julian Alexander Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Jülich, Germany.
| |
Collapse
|
16
|
Immobilization Techniques for Aptamers on Gold Electrodes for the Electrochemical Detection of Proteins: A Review. BIOSENSORS-BASEL 2020; 10:bios10050045. [PMID: 32354207 PMCID: PMC7277302 DOI: 10.3390/bios10050045] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The development of reliable biosensing platforms plays a key role in the detection of proteins in clinically and environmentally derived samples for diagnostics, as well as for process monitoring in biotechnological productions. For this purpose, the biosensor has to be stable and reproducible, and highly sensitive to detect potentially extremely low concentrations and prevent the nonspecific binding of interfering compounds. In this review, we present an overview of recently published (2017–2019) immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins. These include the direct immobilization of thiolated aptamers and the utilization of short linkers, streptavidin/biotin interaction, as well as DNA nanostructures and reduced graphene oxide as immobilization platforms. Applied strategies for signal amplification and the prevention of biofouling are additionally discussed, as they play a crucial role in the design of biosensors. While a wide variety of amplification strategies are already available, future investigations should aim to establish suitable antifouling strategies that are compatible with electrochemical measurements. The focus of our review lies on the detailed discussion of the underlying principles and the presentation of utilized chemical protocols in order to provide the reader with promising ideas and profound knowledge of the subject, as well as an update on recent discoveries and achievements.
Collapse
|
17
|
McConnell EM, Cozma I, Morrison D, Li Y. Biosensors Made of Synthetic Functional Nucleic Acids Toward Better Human Health. Anal Chem 2019; 92:327-344. [PMID: 31656066 DOI: 10.1021/acs.analchem.9b04868] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Ioana Cozma
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1.,Department of Surgery, Division of General Surgery , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Devon Morrison
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| |
Collapse
|
18
|
Development of an aptamer-based field effect transistor biosensor for quantitative detection of Plasmodium falciparum glutamate dehydrogenase in serum samples. Biosens Bioelectron 2018; 123:30-35. [PMID: 30308419 DOI: 10.1016/j.bios.2018.09.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
There has been a continuous strive to develop portable, stable, sensitive and low cost detection system for malaria to meet the demand of effective screening actions in developing countries where the disease is most endemic. Herein, we report an aptamer-based field effect transistor (aptaFET) biosensor, developed by using an extended gate field effect transistor with inter-digitated gold microelectrodes (IDµE) for the detection of the malaria biomarker Plasmodium falciparum glutamate dehydrogenase (PfGDH) in serum samples. A 90 mer long ssDNA aptamer (NG3) selective to PfGDH was used in the aptaFET to capture the target protein. The intrinsic surface net charge of the captured protein led to change in gate potential of the aptaFET device, which could be correlated to the concentration of the protein. This biosensor exhibited a sensitive response in broad dynamic range of 100 fM -10 nM with limits of detection of 16.7 pM and 48.6 pM in spiked buffer and serum samples, respectively. The high selectivity of the biosensor for PfGDH was verified by testing relevant analogous human and parasitic proteins on the device. Overall, the results validated the application potential of the developed aptaFET for diagnosis of both symptomatic and asymptomatic malaria.
Collapse
|