1
|
Ganesh PS, Elugoke SE, Lee SH, Ko HU, Kim SY, Ebenso EE. A bifunctional MoS 2/SGCN nanocatalyst for the electrochemical detection and degradation of hazardous 4-nitrophenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116701. [PMID: 39018731 DOI: 10.1016/j.ecoenv.2024.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
Herein, we reported the dual functions of molybdenum disulfide/sulfur-doped graphitic carbon nitride (MoS2/SGCN) composite as a sensing material for electrochemical detection of 4-NP and a catalyst for 4-NP degradation. The MoS2 nanosheet, sulfur-doped graphitic carbon nitride (SGCN) and MoS2/SGCN were characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) spectroscopy and X-ray photoelectron spectroscopy (XPS). Electrochemical characterization of these materials with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in 1 mM K4[Fe(CN)6]3-/4- show that the composite has the lowest charge transfer resistance and the best electrocatalytic activity. The limit of detection (LOD) and the linear range of 4-nitrophenol at MoS2/SGCN modified glassy carbon electrode (MoS2/SGCN/GCE) were computed as 12.8 nM and 0.1 - 2.6 μM, respectively. Also, the percentage recoveries of 4-NP in spiked tap water samples ranged from 97.8 - 99.1 %. The electroanalysis of 4-NP in the presence of notable interferons shows that the proposed electrochemical sensor features outstanding selectivity toward 4-NP. Additionally, the results of the catalytic degradation of 4-NP at MoS2/SGCN show that the nanocatalyst catalyzed the transformation of 4-NP to 4-aminophenol (4-AP) with a first-order rate constant (k) estimated to be 4.2 ×10-2 s-1. The results of this study confirm that the MoS2/SGCN nanocatalyst is a useful implement for electroanalytical monitoring and catalytic degradation of the hazardous 4-NP in water samples.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea
| | - Hyun-U Ko
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
2
|
Wang S, Zhang T, Jia L, Yang P, He P, Xiao F, Zhou P, Wang Y, Wang X. Electrochemical reduction of nickel selenide/reduced graphene oxide nanocomposites: highly sensitive detection of 4-nitrophenol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Chen H, Qiao S, Yang J, Du X. NiMo/NiCo2O4 as synergy catalyst supported on nickel foam for efficient overall water splitting. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Pham TN, Xuan DN, Van TH, Khanh VL, Minh TL, Nguyen VQ, Vu DL, Le AT. Insight into the Influence of Analyte Molecular Structure Targeted on MoS 2-GO-Coated Electrochemical Nanosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12059-12070. [PMID: 34617771 DOI: 10.1021/acs.langmuir.1c01853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MoS2-GO composites were fabricated by an ultrasonication method at room temperature. Raman spectra, emission scanning electron microscopy (SEM), and transmission electron microscopy (TEM) images were used to study the structural characteristics, morphologies, and sizes of the synthesized materials. An MoS2-GO/SPE (screen-printed electrode) was prepared by a facile dropping method and acted as an effective electrochemical sensor toward clenbuterol (CLB) and 4-nitrophenol (4-NP) detection. Based on the obtained results, the influence of analyte molecular structure on the adsorption ability and electronic interoperability between the targeted analyte and electrode surface were investigated in detail and discussed as well, through some electrochemical kinetic parameters (electron/proton-transfer number, electron transfer rate constant (ks), charge transfer coefficient, and adsorption capacity (Γ)). In particular, it should be stressed that 4-NP molecules possess a simple molecular structure with many positive effects (electronic, conjugation, and small steric effects) and flexible functional groups, resulting in fast electron transport/charge diffusion and effective adsorption process as well as strong interactions with the electrode surface. Therefore, 4-NP molecules have been facilitated better in electrochemical reactions at the electrode surface and electrode-electrolyte interfaces, leading to improved current response and electrochemical sensing performance, compared with those of CLB.
Collapse
Affiliation(s)
- Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
| | - Dinh Ngo Xuan
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
| | - Tuan Hoang Van
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
| | - Vinh Le Khanh
- Institute of Physics at Ho Chi Minh City, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh 70000, Vietnam
| | - Tung Le Minh
- Department of Physics, Tien Giang University, My Tho city 84100, Tien Giang Province, Vietnam
| | - Van Quy Nguyen
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, Hanoi 10000, Vietnam
| | - Dinh Lam Vu
- Graduate University of Science and Technology (GUST) and Institute for Materials Science (IMS), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
5
|
Ashiq R, Fatima B, Shah M, Hussain D, Mohyuddin A, Majeed S, Mehmood R, Imran M, Ashiq MN, Najam-Ul-Haq M. Tin derived antimony/nitrogen-doped porous carbon (Sb/NPC) composite for electrochemical sensing of albumin from hepatocellular carcinoma patients. Mikrochim Acta 2021; 188:338. [PMID: 34510324 DOI: 10.1007/s00604-021-05005-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
An electrochemical sensor based on an antimony/nitrogen-doped porous carbon (Sb/NPC) composite has been developed for the quantitative detection of albumin from hepatocellular carcinoma (HCC) patients. Sb/NPC is hydrothermally synthesized from Sn/NPC precursors. The synthesized precursor (Sn/NPC) and the product (Sb/NPC) are characterized by XRD, FTIR, TGA, UV/Vis, SEM, and AFM. Cyclic voltammetry, chronoamperometry, and electrochemical impedance studies are used to investigate the electrochemical performance of Sb/NPC-GCE. Sb/NPC-GCE detects albumin at physiological pH of 7.4 in the potential range 0.92 V and 0.09 V for oxidation and reduction, respectively. LOD and recovery of Sb/NPC-GCE for the determination of albumin are 0.13 ng.mL-1 and 66.6 ± 0.97-100 ± 2.73%, respectively. Chronoamperometry of the modified working electrode demonstrates its stability for 14 h, indicating its reusability and reproducibility. Sb/NPC-GCE is a selective sensor for albumin detection in the presence of interfering species. The electrode has been applied for albumin detection in human serum samples of HCC patients. A negative correlation of albumin with alpha-fetoprotein levels in HCC patients is observed by statistical analysis.
Collapse
Affiliation(s)
- Rabia Ashiq
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University, Multan, Pakistan
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Rubaida Mehmood
- MINAR Cancer Hospital, Pakistan Atomic Energy Commission, Multan, Pakistan
| | - Muhammad Imran
- Biochemistry Section, Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
6
|
Dib M, Moutcine A, Ouchetto H, Ouchetto K, Chtaini A, Hafid A, Khouili M. Novel synthesis of α-Fe2O3@Mg/Al-CO3-LDH nanocomposite for rapid electrochemical detection of p-nitrophenol. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Gopi S, Selvamani V, Yun K. MoS 2 Decoration Followed by P Inclusion over Ni-Co Bimetallic Metal-Organic Framework-Derived Heterostructures for Water Splitting. Inorg Chem 2021; 60:10772-10780. [PMID: 34196173 DOI: 10.1021/acs.inorgchem.1c01478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Demonstrating a highly efficient non-noble bifunctional catalyst for complete water electrolysis remains challenging because of kinetic limitations and crucial importance for future energy harvesting. Herein, a low-cost, integrated composite of a Ni-Co metal-organic framework decorated with thin MoS2 nanosheets was synthesized by a simple hydrothermal method followed by carbonization and phosphorization for electrochemical oxygen and hydrogen evolution reactions. Such a composite heterostructure exhibits outstanding performance in the electrocatalysis process with a lower overpotential of 184 mV for the oxygen evolution reaction (OER) and 84 mV for the hydrogen evolution reaction (HER) in 1.0 M KOH and 0.5 M H2SO4 electrolytes to reach a current density of 10 mA cm-2, with a slight Tafel slope of 63 mV dec-1 for the OER and 96 mV dec-1 for the HER. The obtained results are far better than those of the commercial benchmark catalyst. Furthermore, online gas chromatography quantifies the amount of hydrogen generation in a symmetric cell as equal to 0.002121 moles with an energy efficiency of about 2.237 mg/kWh. Thus, the composite electrode's remarkable performance is further demonstrated as a potentially viable alternative non-noble electrocatalyst for energy conversion reactions.
Collapse
Affiliation(s)
- Sivalingam Gopi
- Department of BioNano Technology, Gachon University, GyeongGi -Do 13120, Republic of Korea
| | - Vadivel Selvamani
- Centre of Excellence for Energy Storage Technology (CEST), Vidyasirimedhi Institute of Science and technology, Rayong 21210, Thailand
| | - Kyusik Yun
- Department of BioNano Technology, Gachon University, GyeongGi -Do 13120, Republic of Korea
| |
Collapse
|