1
|
Ambrogi EK, Mirica KA. Electronic Chemical Sensors Based on Conductive Framework Materials. Anal Chem 2025; 97:4253-4274. [PMID: 39960215 DOI: 10.1021/acs.analchem.4c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The development of portable electronic chemical sensors is key to solving a number of challenges, including monitoring environmental and industrial hazards, as well as understanding and improving human health. Framework materials possess several desirable characteristics that make them well-suited for electroanalytical applications, including high surface area, atomically precise distribution of active sites, and tunable properties that can be leveraged through modular reticular chemistry. This review highlights the emergence of conductive framework materials as active components in electrically transduced chemical sensors, including the development of new materials for the detection of a wide variety of analytes in both gas and liquid phase. The efforts to gain fundamental understanding of the molecular interactions and sensing mechanisms between framework materials and analytes are described, along with applications of these materials on portable and flexible substrates. The review suggests areas for further study, including the study of material-analyte interactions at the molecular level and the continued development of scalable methods for the integration of framework materials into low-power, portable sensing devices.
Collapse
Affiliation(s)
- Emma K Ambrogi
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| |
Collapse
|
2
|
Ambrogi EK, Li Y, Chandra P, Mirica KA. Employing Triphenylene-Based, Layered, Conductive Metal-Organic Framework Materials as Electrochemical Sensors for Nitric Oxide in Aqueous Media. ACS Sens 2025; 10:553-562. [PMID: 39804802 DOI: 10.1021/acssensors.4c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SANO = 6.7 ± 1.2 and 5.7 ± 1.1 for Ni3(HHTP)2 and Cu3(HHTP)2, respectively) for detecting micromolar concentrations of NO. Zinc-based MOF electrodes offered more limited enhancement (SANO = 3.1 ± 0.5), while the cobalt-based MOF analog had intrinsic redox activity at potentials close to NO oxidation, which interfered with sensing. Combining MOFs with a conductive polymer improved electrode stability under repeated electrochemical scanning (14 ± 3% decrease in signal over 10 scans). The stabilized Ni3(HHTP)2@polymer-coated electrodes were able to detect NO at physiologically relevant concentrations (LOD = 9.0 ± 4.8 nM) in amperometric sensing experiments, and exhibited moderate selectivity against ascorbic acid and nitrite (log kj,NO = -1.3 ± 0.3 and -0.83 ± 0.68 for ascorbic acid and nitrite, respectively). This study demonstrates that layered, conductive 2D MOFs have promising applicability for NO detection in aqueous environments.
Collapse
Affiliation(s)
- Emma K Ambrogi
- Department of Chemistry, Burke Laboratories, Dartmouth College, 41 College St., Hanover, New Hampshire 03755, United States
| | - Yuxin Li
- Department of Chemistry, Burke Laboratories, Dartmouth College, 41 College St., Hanover, New Hampshire 03755, United States
| | - Priyanshu Chandra
- Department of Chemistry, Burke Laboratories, Dartmouth College, 41 College St., Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratories, Dartmouth College, 41 College St., Hanover, New Hampshire 03755, United States
| |
Collapse
|
3
|
Ray P, Pal S, Sarkar A, Sultana F, Basu A, Show B. Oyster Pearl-Shaped Ternary Iron Chalcogenide, FeSe 0.5Te 0.5, Films on FTO through Electrochemical Growth from the Exchange of Chalcogens Boosted the Enzyme-Free Urea-Sensing Ability toward Real Analytes. ACS APPLIED BIO MATERIALS 2024; 7:1621-1642. [PMID: 38430188 DOI: 10.1021/acsabm.3c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Here, iron chalcogenide thin films were developed for the first time by using the less hazardous electrodeposition technique at optimized conditions on an FTO glass substrate. The chalcogenides have different surface, morphological, structural, and optical properties, as well as an enzyme-free sensing behavior toward urea. Numerous small crystallites of about ∼20 to 25 nm for FeSe, ∼18 to 25 nm for FeTe, and ∼18 to 22 nm in diameter for FeSeTe are observed with partial agglomeration under an electron microscope, having a mixed phase of tetragonal and orthorhombic structures of FeSe, FeTe, and, FeSeTe, respectively. Profilometry, XRD, FE-SEM, HR-TEM, XPS, EDX, UV-vis spectroscopy, and FT-IR spectroscopy were used for the analysis of binary and ternary composite semiconductors, FeSe, FeTe, and FeSeTe, respectively. Electrochemical experiments were conducted with the chalcogenide thin films and urea as the analyte in phosphate-buffered media at a pH of ∼ 7.4 in the concentration range of 3-413 μM. Cyclic voltammetry was performed to determine the sensitivity of the prepared electrode at an optimized scan rate of 50 mV s-1. The electrodeposited chalcogenide films appeared with a low detection limit and satisfactory sensitivity, of which the ternary chalcogenide film has the lowest LOD of 1.16 μM and the maximum sensitivity of 74.22 μA μM-1 cm-2. The transition metal electrode has a very wide range of detection limit of 1.25-2400 μM with a short response time of 4 s. This fabricated biosensor is capable of exhibiting almost 75% of its starting activity after 2 weeks of storage in the freezer at 4 °C. Simple methods of preparation, a cost-effective process, and adequate electrochemical sensing of urea confirm that the prepared sensor is suitable as an enzyme-free urea sensor and can be utilized for future studies.
Collapse
Affiliation(s)
- Purbali Ray
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sunanda Pal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Abhimanyu Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Farhin Sultana
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Arghyadeep Basu
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|
4
|
Tan G, Wang S, Yu J, Chen J, Liao D, Liu M, Nezamzadeh-Ejhieh A, Pan Y, Liu J. Detection mechanism and the outlook of metal-organic frameworks for the detection of hazardous substances in milk. Food Chem 2024; 430:136934. [PMID: 37542961 DOI: 10.1016/j.foodchem.2023.136934] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Milk has a high nutritional value. However, milk is easily contaminated in the production, processing, and storage processes, which harms consumers' health. Therefore, the harmful substances' detection in milk is important. Metal-organic frameworks (MOFs) have proven high potential in food safety detection due to their unique porous structure, large effective surface area, large porosity, and structural tunability. This article systematically describes the detection mechanism of fluorescence, electrochemical, colorimetric, and enzyme-linked immunosorbent assay based on MOFs. The progress of the application of MOFs in the detection of antibiotics, harmful microorganisms and their toxins, harmful ions, and other harmful substances in milk in recent years is reviewed. The structural tunability of MOFs enables them to be functionalized, giving the ability to be applied to different detection methods or substances. Therefore, MOFs can be used as an advantageous sensing material for detecting harmful substances in the complex environment of milk.
Collapse
Affiliation(s)
- Guijian Tan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Sanying Wang
- Department of Pain, Dalang Hospital, Dongguan 523770, China
| | - Jialin Yu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Jiahao Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Miao Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | | | - Ying Pan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| |
Collapse
|
5
|
Naik TSSK, Singh S, Narasimhappa P, Varshney R, Singh J, Khan NA, Zahmatkesh S, Ramamurthy PC, Shehata N, Kiran GN, Sunil K. Green and sustainable synthesis of CaO nanoparticles: Its solicitation as a sensor material and electrochemical detection of urea. Sci Rep 2023; 13:19995. [PMID: 37968362 PMCID: PMC10651922 DOI: 10.1038/s41598-023-46728-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023] Open
Abstract
Urea is recognized as one of the most frequently used adulterants in milk to enhance artificial protein content, and whiteness. Drinking milk having high urea concentrations which causes innumerable health disputes like ulcers, indigestion, and kidney-related problems. Therefore, herein, a simple and rapid electroanalytical platform was developed to detect the presence of urea in milk using a modified electrode sensor. Calcium oxide nanoparticles (CaO NPs) were green synthesized and used as a catalyst material for developing the sensor. Synthesized materials formation was confirmed by different techniques like FTIR, UV-visible, XRD, SEM-EDX, and Raman spectroscopy. The carbon paste electrode (CPE) was modified using the CaO NPs and used as a working electrode during the analysis followed by cyclic voltammetry and differential pulse voltammetry (DPV) techniques. The fabricated calcium oxide modified carbon paste electrode (CaO/CPE) successfully detected the presence of urea in the lower concentration range (lower limit of detection (LLOD) = 0.032 µM) having a wide linear detection range of 10-150 µM. Adsorption-controlled electrode process was achieved at the scan rate variation parameter. The leading parameters like the selectivity, repeatability, and stability of the CaO/CPE were investigated. The relative standard deviation of sensor was ± 3.8% during the interference and stability study.
Collapse
Affiliation(s)
- T S Sunil Kumar Naik
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Pavithra Narasimhappa
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Radhika Varshney
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Joginder Singh
- Department of Botany, Nagaland University, Lumami, Nagaland, 798627, India
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico
| | - Praveen C Ramamurthy
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India.
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India.
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - G N Kiran
- Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, 572107, India
| | - K Sunil
- Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, 572107, India
| |
Collapse
|
6
|
Dourandish Z, Beitollahi H, Sheikhshoaie I. Simultaneous Voltammetric Determination of Epinine and Venlafaxine Using Disposable Screen-Printed Graphite Electrode Modified by Bimetallic Ni-Co-Metal-Organic-Framework Nanosheets. Molecules 2023; 28:molecules28052128. [PMID: 36903373 PMCID: PMC10004146 DOI: 10.3390/molecules28052128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
We constructed two-dimensional NiCo-metal-organic-framework (NiCo-MOF) nanosheets based on a facile protocol and then characterized them using multiple approaches (X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission-scanning electron microscopy (FE-SEM), and N2 adsorption/desorption isotherms techniques). As a sensitive electroactive material, the as-fabricated bimetallic NiCo-MOF nanosheets were employed to modify a screen-printed graphite electrode surface (NiCo-MOF/SPGE) for epinine electro-oxidation. According to the findings, there was a great improvement in the current responses of the epinine because of the appreciable electron transfer reaction and catalytic performance of the as-produced NiCo-MOF nanosheets. Differential pulse voltammetry (DPV), cyclic voltammetry (CV) and chronoamperometry were utilized to analyze the electrochemical activity of the epinine on the NiCo-MOF/SPGE. A linear calibration plot was obtained in the broad concentration range (0.07-335.0 µM) with a high sensitivity (0.1173 µA/µM) and a commendable correlation coefficient (0.9997). The limit of detection (S/N = 3) was estimated at 0.02 µM for the epinine. According to findings from DPV, the electrochemical sensor of the NiCo-MOF/SPGE could co-detect epinine and venlafaxine. The repeatability, reproducibility and stability of the NiCo-metal-organic-framework-nanosheets-modified electrode were investigated, and the relative standard deviations obtained indicated that the NiCo-MOF/SPGE had superior repeatability, reproducibility and stability. The as-constructed sensor was successfully applicable in sensing the study analytes in real specimens.
Collapse
Affiliation(s)
- Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
- Correspondence:
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| |
Collapse
|
7
|
Xu Y, Jin Z, Zhao Y. Tunable Preparation of SERS-Active Au-Ag Janus@Au NPs for Label-Free Staphylococcal Enterotoxin C Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1224-1233. [PMID: 36606875 DOI: 10.1021/acs.jafc.2c08147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Trace staphylococcal enterotoxin C (SEC) in food poses a serious risk to human health, and it is vital to develop a sensitive and accurate approach for SEC monitoring. Herein, a surface-enhanced Raman scattering (SERS) aptasensor was developed for the quantitative detection of SEC. SERS-active gold-silver Janus@gold nanoparticles (Au-Ag Janus@Au NPs) were prepared and showed tunable solid and hollow nanostructures by simply controlling the pH values of the reaction system. Solid Au-Ag Janus@Au NPs exhibited intrinsic and enhanced SERS activity due to the intense plasmonic coupling effect between Au dots and Au-Ag Janus NPs, which was 2.27-fold and 17.46-fold higher than that of Au-Ag Janus NPs and hollow Au-Ag Janus@Au NPs, respectively. The attachment of multiple Au dots also protected Ag islands from oxidization, which increased the stability of Au-Ag Janus@Au NPs. Solid Au-Ag Janus@Au NPs served as a label-free, strong, and stable SERS detection probe and achieved sensitive and reliable detection of SEC. The limit of detection was as low as 0.55 pg/mL. This study will expand the application prospects of label-free SERS detection probes in complex systems for food safety monitoring.
Collapse
Affiliation(s)
- Yinjuan Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhao Jin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Ghosh A, Fathima Thanutty Kallungal S, Ramaprabhu S. 2D Metal-Organic Frameworks: Properties, Synthesis, and Applications in Electrochemical and Optical Biosensors. BIOSENSORS 2023; 13:123. [PMID: 36671958 PMCID: PMC9855741 DOI: 10.3390/bios13010123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) nanomaterials like graphene, layered double hydroxides, etc., have received increasing attention owing to their unique properties imparted by their 2D structure. The newest member in this family is based on metal-organic frameworks (MOFs), which have been long known for their exceptional physicochemical properties-high surface area, tunable pore size, catalytic properties, etc., to list a few. 2D MOFs are promising materials for various applications as they combine the exciting properties of 2D materials and MOFs. Recently, they have been extensively used in biosensors by virtue of their enormous surface area and abundant, accessible active sites. In this review, we provide a synopsis of the recent progress in the field of 2D MOFs for sensor applications. Initially, the properties and synthesis techniques of 2D MOFs are briefly outlined with examples. Further, electrochemical and optical biosensors based on 2D MOFs are summarized, and the associated challenges are outlined.
Collapse
Affiliation(s)
| | | | - Sundara Ramaprabhu
- Alternative Energy and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
9
|
Liu X, Yang H, Diao Y, He Q, Lu C, Singh A, Kumar A, Liu J, Lan Q. Recent advances in the electrochemical applications of Ni-based metal organic frameworks (Ni-MOFs) and their derivatives. CHEMOSPHERE 2022; 307:135729. [PMID: 35931255 DOI: 10.1016/j.chemosphere.2022.135729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Nickel-based metal-organic skeletal materials (Ni-MOFs) are a new class of inorganic materials that have aroused attention of investigators during past couple of years. They offer advantages such as high specific surface area, structural diversity, tunable framework etc. This assorted class of materials exhibited catalytic activity and electrochemical properties and display wide range of applications in the fields of electrochemical sensing, electrical energy storage and electrocatalysis. In this context, the presented review focuses on strategies to improve the electrochemical performance and stability of Ni-MOFs through the optimization of synthesis conditions, the construction of composite materials, and the preparation of derivatives of precursors. The review also presents the applications of Ni-MOFs and their derivatives as electrochemical sensors, energy storage devices, and electrocatalysts. In addition, the challenges and further electrochemical development prospects of Ni-MOFs have been discussed.
Collapse
Affiliation(s)
- Xuezhang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Hanping Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Yingyao Diao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Qi He
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Ayushi Singh
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Qian Lan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| |
Collapse
|
10
|
Ultrathin Ni-Co nanosheets with disparate-CO2-affinity nanodomains in membranes to improve gas separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Shan C, Zhang X, Ma S, Xia X, Shi Y, Yang J. Preparation and application of bimetallic mixed ligand MOF photocatalytic materials. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Lin Y, Li Y, Cao Y, Wang X. Two-dimensional MOFs: Design & Synthesis and Applications. Chem Asian J 2021; 16:3281-3298. [PMID: 34453404 DOI: 10.1002/asia.202100884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/25/2021] [Indexed: 12/24/2022]
Abstract
For the past few years, two-dimensional materials have attracted widespread attention owing to their special properties and potential applications. It is well-known that graphene, transition metal disulfide compounds (TMDC), carbon nitride, transition metal carbonitrides (Mxenes), silene and hexagonal boron nitride are typical two-dimensional materials. Compared with these traditional two-dimensional materials, two-dimensional MOF is favored by numerous researchers because of its unique structure. Based on the unique metal ion and organic ligand coordination of MOF and two-dimensional layered structure, the applications of two-dimensional MOF were getting serious, including catalysis, supercapacitor, gas adsorption/separation, sensors and so on. This review presents a relatively comprehensive summary of the design & synthesis and applications of two-dimensional MOF over the past few years. Furthermore, the opportunities and challenges have been discussed to supply a promising prospect to this field.
Collapse
Affiliation(s)
- Yuting Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Yuehua Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Yu Cao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| |
Collapse
|