1
|
Nowicka D, Garbaczewski K, Łuczak T, Forte G, Consiglio G, Kubicki M, Patroniak V, Gorczyński A. Application of a simple copper(II) complex compound as an epinephrine selective voltammetric sensor in the presence of uric acid under aqueous conditions. Dalton Trans 2025; 54:1000-1012. [PMID: 39618335 DOI: 10.1039/d4dt02702g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Developing sensors with high sensitivity and selectivity for detecting neurotransmitters under near-physiological conditions is a major challenge and is crucial for preventing diseases of the nervous, cardiovascular, and endocrine systems. Most existing systems that meet these requirements involve either complicated synthesis processes, require sulfur groups, or are not functional under aqueous conditions. Herein, we report that the self-organisation of a simple imine ligand L with copper(II) tetrafluoroborate leads to the formation of a [CuL2](BF4)2 complex (CuL2) with a 2 : 1 ligand-to-metal ratio, as confirmed by high-resolution electrospray ionization mass spectrometry (HR ESI-MS), Fourier-transform infrared (FT-IR) spectroscopy and single-crystal X-ray analysis. Surprisingly, modifying a gold surface with a self-assembled monolayer of the CuL2 complex created a stable sensor for selective detection of epinephrine (EP) using differential pulse voltammetry (DPV) in phosphate buffer solution (PBS) at pH 7.0. A linear correlation between the current response and the concentration of EP was observed with a detection limit of 0.03 μM, high reproducibility and good stability in the range of 0.0001 to 0.875 mM. These results show that the new sensor (Cu/Au) can serve as a reliable analytical tool to selectively detect EP alone and in a mixture with coexisting uric acid (UA) in tested samples.
Collapse
Affiliation(s)
- Daria Nowicka
- Faculty of Chemistry, Adam Mickiewicz, University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Karol Garbaczewski
- Faculty of Chemistry, Adam Mickiewicz, University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Teresa Łuczak
- Faculty of Chemistry, Adam Mickiewicz, University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Giuseppe Forte
- Department of Drug Science and Health, University of Catania, Via S. Sofia 64, 95125, Italy
| | - Giuseppe Consiglio
- Department of Chemical Science, University of Catania, Via S. Sofia 64, 95125, Italy
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz, University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Violetta Patroniak
- Faculty of Chemistry, Adam Mickiewicz, University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz, University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
2
|
Iftikhar T, Iftikhar N, Chi G, Qiu W, Xie Y, Liang Z, Huang C, Su L. Unlocking the future of brain research: MOFs, TMOs, and MOFs/TMOs for electrochemical NTMs detection and analysis. Talanta 2024; 267:125146. [PMID: 37688896 DOI: 10.1016/j.talanta.2023.125146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
The central nervous system relies heavily on neurotransmitters (NTMs), and NTM imbalances have been linked to a wide range of neurological conditions. Thus, the development of reliable detection techniques is essential for advancing brain studies. This review offers a comprehensive analysis of metal-organic frameworks (MOFs), transition metal oxides (TMOs), and MOFs-derived TMOs (MOFs/TMOs) as materials for electrochemical (EC) sensors targeting the detection of key NTMs, specifically dopamine (DA), epinephrine (EP), and serotonin (SR). The unique properties and diverse families of MOFs and TMOs, along with their nanostructured hybrids, are discussed in the context of EC sensing. The review also addresses the challenges in detecting NTMs and proposes a systematic approach to tackle these obstacles. Despite the vast amount of research on MOFs and TMOs-based EC sensors for DA detection, the review highlights the gaps in the literature for MOFs/TMOs-based EC sensors specifically for EP and SR detection, as well as the limited research on microneedles (MNs)-based EC sensors modified with MOFs, TMOs, and MOFs/TMOs for NTMs detection. This review serves as a foundation to encourage researchers to further explore the potential applications of MOFs, TMOs, and MOFs/TMOs-based EC sensors in the context of neurological disorders and other health conditions related to NTMs imbalances.
Collapse
Affiliation(s)
- Tayyaba Iftikhar
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518055, PR China
| | - Nishwa Iftikhar
- Department of Medicine, Quaid-e-Azam Medical College, Bahawalpur, Punjab, Pakistan
| | - Guilin Chi
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518055, PR China
| | - Wenjing Qiu
- Department of Rheumatology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, PR China
| | - Yuanting Xie
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518055, PR China.
| | - Zhen Liang
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518055, PR China
| | - Cibo Huang
- Department of Rheumatology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, PR China
| | - Lei Su
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518055, PR China.
| |
Collapse
|
3
|
Pecheu CN, Tchieda VK, Tajeu KY, Jiokeng SLZ, Lesch A, Tonle IK, Ngameni E, Janiak C. Electrochemical Determination of Epinephrine in Pharmaceutical Preparation Using Laponite Clay-Modified Graphene Inkjet-Printed Electrode. Molecules 2023; 28:5487. [PMID: 37513359 PMCID: PMC10386127 DOI: 10.3390/molecules28145487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Epinephrine (EP, also called adrenaline) is a compound belonging to the catecholamine neurotransmitter family. It can cause neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. This work describes an amperometric sensor for the electroanalytical detection of EP by using an inkjet-printed graphene electrode (IPGE) that has been chemically modified by a thin layer of a laponite (La) clay mineral. The ion exchange properties and permeability of the chemically modified electrode (denoted La/IPGE) were evaluated using multi-sweep cyclic voltammetry, while its charge transfer resistance was determined by electrochemical impedance spectroscopy. The results showed that La/IPGE exhibited higher sensitivity to EP compared to the bare IPGE. The developed sensor was directly applied for the determination of EP in aqueous solution using differential pulse voltammetry. Under optimized conditions, a linear calibration graph was obtained in the concentration range between 0.8 µM and 10 μM. The anodic peak current of EP was directly proportional to its concentration, leading to detection limits of 0.34 μM and 0.26 μM with bare IPGE and La/IPGE, respectively. The sensor was successfully applied for the determination of EP in pharmaceutical preparations. Recovery rates and the effects of interfering species on the detection of EP were evaluated to highlight the selectivity of the elaborated sensor.
Collapse
Affiliation(s)
- Chancellin Nkepdep Pecheu
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Victor Kougoum Tchieda
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Kevin Yemele Tajeu
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Sherman Lesly Zambou Jiokeng
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Andreas Lesch
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Ignas Kenfack Tonle
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Emmanuel Ngameni
- Laboratory of Analytical Chemistry, Faculty of Science, The University of Yaounde 1, Yaounde P.O. Box 812, Cameroon
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
4
|
The influence of bismuth participation on the morphological and electrochemical characteristics of gallium oxide for the detection of adrenaline. Anal Bioanal Chem 2023:10.1007/s00216-023-04617-7. [PMID: 36884077 DOI: 10.1007/s00216-023-04617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
In this work, we investigated the morphological and electrochemical properties of gallium/bismuth mixed oxide. The bismuth concentration was varied from 0 to 100%. The correct ratio was determined with inductively coupled plasma-optical emission spectroscopy (ICP-OES), while surface characteristics were determined using scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurement. Electrochemical characteristics were studied using electrochemical impedance spectroscopy (EIS) in the Fe2+/3+ couple. The obtained materials were tested for adrenaline detection. After square wave voltammetry (SWV) optimization, the best electrode showed a wide linear working range from 7 to 100 µM at pH 6 of the Britton-Robinson buffer solution (BRBS) supporting electrolyte. The limit of detection (LOD) for the proposed method was calculated as 1.9 µM, with a limit of quantification (LOQ) of 5.8 µM. The excellent selectivity of the proposed method, with good repeatability and reproducibility, strongly suggests the possible application of the procedure for the determination of adrenaline in artificially prepared real samples. The practical applicability with good recovery values indicates that the morphology of the materials is closely connected with other parameters, which further suggests that the developed approach can offer a low-cost, rapid, selective, and sensitive method for adrenaline monitoring.
Collapse
|
5
|
Sagar P, Srivastava M, Srivastava SK. Electrochemical Sensor for the Anti‐tuberculosis Drug Rifampicin on CuO@rGO‐Nanocomposite‐Modified GCE by Voltammetry Techniques. ChemistrySelect 2022. [DOI: 10.1002/slct.202202271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pinky Sagar
- Department of Physics Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Monika Srivastava
- School of Materials Science & Technology Indian Institute of Technology (BHU) Varanasi 221005 India
| | - Sanjay K. Srivastava
- Department of Physics Institute of Science Banaras Hindu University Varanasi 221005 India
| |
Collapse
|
6
|
Electrochemical Sensing of Epinephrine on a Carbon Nanofibers and Gold Nanoparticle-Modified Electrode. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00769-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Ebube. Uwaya G, Wen Y, Bisetty K. A combined experimental-computational approach for electrocatalytic detection of epinephrine using nanocomposite sensor based on polyaniline/nickel oxide. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Ren L, Lu J, Liu H. Activated carbon supported Fe–Cu–NC as an efficient cathode catalyst for a microbial fuel cell. NEW J CHEM 2022. [DOI: 10.1039/d2nj03939g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Herein, the output power density produced by Fe–Cu–NC-x as the cathode catalyst of a MFC was higher than that of the AC control.
Collapse
Affiliation(s)
- Linde Ren
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| | - Jinrong Lu
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| | - Hua Liu
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| |
Collapse
|