1
|
Analysis of Sugars in Honey Samples by Capillary Zone Electrophoresis Using Fluorescence Detection. SEPARATIONS 2023. [DOI: 10.3390/separations10030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The applicability of capillary electrophoresis (CE) with light-emitting diode-induced fluorescence detection (LEDIF) for the separation of sugars in honey samples was studied. An amount of 25 mM ammonium acetate (pH 4.5) with 0.3% polyethylene oxide (PEO) was found to be optimal for the efficient separation of carbohydrates. 8-aminopyrene-1,3,6-trisulfonic acid (APTS) was used for the labeling of the carbohydrate standards and honey sugars for fluorescence detection. The optimized method was applied in the quantitative analysis of fructose and glucose by direct injection of honey samples. Apart from the labeling reaction, no other sample preparation was performed. The mean values of the fructose/glucose ratio for phacelia honey, acacia honey and honeydew honey were 0.86, 1.61 and 1.42, respectively. The proposed method provides high separation efficiency and sensitive detection within a short analysis time. Apart from the labeling reaction, it enables the injection of honeys without sample pretreatment. This is the first time that fluorescence detection has been applied for the CE analysis of sugars in honeys.
Collapse
|
2
|
Harnisch H, Hühner J, Neusüß C, Koschella A, Heinze T, Scriba GKE. Development and validation of a capillary electrophoresis method for the characterization of sulfoethyl cellulose. J Sep Sci 2016; 39:4645-4652. [PMID: 27696722 DOI: 10.1002/jssc.201600687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 11/09/2022]
Abstract
To characterize sulfoethyl cellulose el samples, a capillary electrophoresis method was developed and validated sulfoethyl cellulose el was hydrolyzed, and the resulting d-glucose derivatives were analyzed after reductive amination with 4-aminobenzoic acid using 150 mM boric acid, pH 9.5, as background electrolyte at 20°C and a voltage of 28 kV. Peak identification was derived from capillary electrophoresis with mass spectrometry using 25 mM ammonia adjusted to pH 6.2 by acetic acid as electrolyte. Besides mono-, di-, and trisulfoethyl d-glucose small amounts of disaccharides could be identified resulting from incomplete hydrolysis. The linearity of the borate buffer-based capillary electrophoresis method was evaluated using d-glucose in the concentration range of 3.9-97.5 μg/mL, while limits of detection and quantification derived from the signal-to-noise ratio of 3 and 10 were 0.4 ± 0.1 and 1.2 ± 0.3 μg/mL, respectively. Reproducibility and intermediate precision were determined using a hydrolyzed sulfoethyl cellulose el sample and ranged between 0.2 and 8.8% for migration times and between 0.3 and 10.4% for peak area. The method was applied to the analysis of the degree of substitution of synthetic sulfoethyl cellulose el samples obtained by variation of the synthetic process and compared to data obtained by elemental analysis.
Collapse
Affiliation(s)
- Henrik Harnisch
- Department of Pharmaceutical and Medicinal Chemistry, School of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Jens Hühner
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Institute of Pharmaceutical Science, University of Tübingen, Tübingen, Germany
| | | | - Andreas Koschella
- Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Gerhard K E Scriba
- Department of Pharmaceutical and Medicinal Chemistry, School of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
3
|
Toppazzini M, Coslovi A, Rossi M, Flamigni A, Baiutti E, Campa C. Capillary Electrophoresis of Mono- and Oligosaccharides. Methods Mol Biol 2016; 1483:301-338. [PMID: 27645743 DOI: 10.1007/978-1-4939-6403-1_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.
Collapse
Affiliation(s)
- Mila Toppazzini
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Anna Coslovi
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Marco Rossi
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Anna Flamigni
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Edi Baiutti
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Cristiana Campa
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy.
| |
Collapse
|
4
|
Zhong X, Chen Z, Snovida S, Liu Y, Rogers JC, Li L. Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry for Quantitative Analysis of Glycans Labeled with Multiplex Carbonyl-Reactive Tandem Mass Tags. Anal Chem 2015; 87:6527-34. [PMID: 25981625 DOI: 10.1021/acs.analchem.5b01835] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently developed carbonyl-reactive aminoxy tandem mass tag (aminoxyTMT) reagents enable multiplexed characterization and quantitative comparison of structurally complex glycans between different biological samples. Compared to some previously reported isotopic labeling strategies for glycans, the use of the aminoxyTMT method features a simple labeling procedure, excellent labeling efficiency, and reduced spectral complexity at the MS(1) level. Presence of the tertiary amine functionality in the reporter region of the aminoxyTMT labels leads to increased ionization efficiency of the labeled glycans thus improving electrospray ionization (ESI)-mass spectrometry (MS) detection sensitivity. The use of the labeling reagent also makes electrophoretic separation of the labeled neutral and acidic glycans feasible. In this work, we characterized the ESI and collision induced dissociation (CID) behavior of the aminoxyTMT-labeled neutral and sialylated glycans. For the high-mannose N-glycans and small sialylated oligosaccharides, CID fragmentation of [M + Na + H](2+) provides the most informative MS(2) spectra for both quantitative and qualitative analysis. For complex N-glycans, MS(3) of the protonated Y1(H) ion can be used for relative quantification without interference from the HexNAc fragments. Online capillary electrophoresis (CE)-ESI-MS/MS analyses of multiplexed aminoxyTMT-labeled human milk oligosaccharides (HMOs) and different types of N-glycans released from glycoprotein standards were demonstrated. Improved resolution and quantification accuracy of the labeled HMO isomers was achieved by coupling CE with traveling wave ion mobility (TWIM)-CID-MS/MS. N-Glycans released from human serum protein digests were labeled with six-plex aminoxyTMT and subjected to CE-ESI-MS/pseudo-MS(3) analysis, which demonstrated the potential utility of this glycan relative quantification platform for more complex biological samples.
Collapse
Affiliation(s)
- Xuefei Zhong
- †School of Pharmacy, University of Wisconsin, Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Zhengwei Chen
- ‡Department of Chemistry, University of Wisconsin, Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Sergei Snovida
- §Thermo Scientific Pierce Protein Research, Thermo Fisher Scientific, Rockford, Illinois 61105, United States
| | - Yan Liu
- ∥School of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - John C Rogers
- §Thermo Scientific Pierce Protein Research, Thermo Fisher Scientific, Rockford, Illinois 61105, United States
| | - Lingjun Li
- †School of Pharmacy, University of Wisconsin, Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States.,‡Department of Chemistry, University of Wisconsin, Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Yamamoto S, Nagai E, Asada Y, Kinoshita M, Suzuki S. A rapid and highly sensitive microchip electrophoresis of mono- and mucin-type oligosaccharides labeled with 7-amino-4-methylcoumarin. Anal Bioanal Chem 2014; 407:1499-503. [PMID: 25433688 DOI: 10.1007/s00216-014-8363-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 11/25/2022]
Abstract
A selective separation method using a poly(methylmethacrylate) microchip was developed for 7-amino-4-methylcoumarin-labeled saccharides in a crude reaction mixture. In an alkaline borate buffer, saccharide derivatives formed strong anionic borate complexes. These complexes moved from the cathode to the anode in an electric field and were detected near the anode. Excess labeling reagents and other foreign substances remained at the inlet reservoir. A confocal fluorimetric detection system enabled the determination of monosaccharide derivatives with good linearity between at least 5 and 100 nM, corresponding to 50 fmol to 1 pmol per injection. The lower limit of detection (signal-to-noise = 5) was 2 nM. The sensitivity and linear quantitation range were comparable to reported values using fluorometric detection, capillary electrophoresis, or liquid chromatography. Application of the method showed excellent resolution in the analysis of O-linked glycans chemically released from glycoproteins.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Osaka, Japan,
| | | | | | | | | |
Collapse
|
6
|
Yodoshi M, Ikeda N, Yamaguchi N, Nagata M, Nishida N, Kakehi K, Hayakawa T, Suzuki S. A novel condition for capillary electrophoretic analysis of reductively aminated saccharides without removal of excess reagents. Electrophoresis 2013; 34:3198-205. [DOI: 10.1002/elps.201200612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Masahiro Yodoshi
- Faculty of Pharmaceutical Sciences; Kinki University; Kowakae; Higashi-Osaka Osaka Japan
| | - Natsumi Ikeda
- Faculty of Pharmaceutical Sciences; Kinki University; Kowakae; Higashi-Osaka Osaka Japan
| | - Naoko Yamaguchi
- Faculty of Pharmaceutical Sciences; Kinki University; Kowakae; Higashi-Osaka Osaka Japan
| | - Mana Nagata
- Faculty of Pharmaceutical Sciences; Kinki University; Kowakae; Higashi-Osaka Osaka Japan
| | - Noriaki Nishida
- Faculty of Pharmaceutical Sciences; Kinki University; Kowakae; Higashi-Osaka Osaka Japan
| | - Kazuaki Kakehi
- Faculty of Pharmaceutical Sciences; Kinki University; Kowakae; Higashi-Osaka Osaka Japan
| | - Takao Hayakawa
- Faculty of Pharmaceutical Sciences; Kinki University; Kowakae; Higashi-Osaka Osaka Japan
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences; Kinki University; Kowakae; Higashi-Osaka Osaka Japan
| |
Collapse
|
7
|
Offline and online capillary electrophoresis enzyme assays of β-N-acetylhexosaminidase. Anal Bioanal Chem 2013; 405:2425-34. [DOI: 10.1007/s00216-012-6607-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/02/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|
8
|
SUZUKI S. Recent Developments in Liquid Chromatography and Capillary Electrophoresis for the Analysis of Glycoprotein Glycans. ANAL SCI 2013; 29:1117-28. [DOI: 10.2116/analsci.29.1117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Rapid and sensitive analyses of glycoprotein-derived oligosaccharides by liquid chromatography and laser-induced fluorometric detection capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2928-34. [DOI: 10.1016/j.jchromb.2011.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 07/29/2011] [Accepted: 08/21/2011] [Indexed: 11/19/2022]
|
10
|
Gupta R, Baldock SJ, Fielden PR, Grieve BD. Capillary zone electrophoresis for the analysis of glycoforms of cellobiohydrolase. J Chromatogr A 2011; 1218:5362-8. [PMID: 21726866 DOI: 10.1016/j.chroma.2011.06.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 02/01/2023]
Abstract
Cellobiohydrolase (CBH) is an important enzyme for the conversion of lignocellulosic biomass to ethanol. This work separated the glycoforms of CBH possessing different numbers of neutral mannoses using capillary zone electrophoresis (CZE) in a 50 mM, pH 7.5 phosphate buffer. The method analysed CBH in an intact form using a polyacrylamide coated fused silica capillary without requiring additives or labelling of the enzyme. The migration time of the major peak was found to be 21.6±0.1 min (n=3) and the approach is suitable for testing of batch-to-batch consistency of CBH. Ease-of-use, automation and speed are the other benefits due to which the use of CZE for analysing glycoforms of CBH was concluded to be ideal.
Collapse
Affiliation(s)
- Ruchi Gupta
- School of Electrical and Electronics Engineering, The University of Manchester, Sackville Street Building, Sackville Street, Manchester M13 9PL, UK.
| | | | | | | |
Collapse
|
11
|
|
12
|
YODOSHI M, IKUTA T, MOURI Y, SUZUKI S. Specific Extraction of Sialic-acid-containing Glycans and Glycopeptides Using Serotonin-bonded Silica. ANAL SCI 2010; 26:75-81. [DOI: 10.2116/analsci.26.75] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Tomoko IKUTA
- Department of Pharmaceutical Sciences, Kinki University
| | - Yukie MOURI
- Department of Pharmaceutical Sciences, Kinki University
| | - Shigeo SUZUKI
- Department of Pharmaceutical Sciences, Kinki University
| |
Collapse
|
13
|
Rustighi I, Campa C, Rossi M, Semeraro S, Vetere A, Gamini A. Analysis ofN-acetylaminosugars by CE: A comparative derivatization study. Electrophoresis 2009; 30:2632-9. [DOI: 10.1002/elps.200800791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Amon S, Zamfir AD, Rizzi A. Glycosylation analysis of glycoproteins and proteoglycans using capillary electrophoresis-mass spectrometry strategies. Electrophoresis 2008; 29:2485-507. [PMID: 18512669 DOI: 10.1002/elps.200800105] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review highlights recent developments in glycosylation analysis by modern MS in combination with CE based preseparation. Focused on CE-MS strategies aimed for glycotyping, the review addresses the detailed glycoform analysis of glycoproteins, glycopeptides, and proteoglycans. Glycoform analysis in the context of modern glycoproteomics is briefly addressed, as well. CZE, CIEF, and frontal analysis CE approaches hyphenated to high-resolution multistage MS for the detailed analysis of protein-linked glycan structures are overviewed in a comprehensive way. Advantages and limitations of various methodological approaches and techniques as well as mass spectrometric instrumentation are discussed in the particular context of glycoanalysis.
Collapse
Affiliation(s)
- Sabine Amon
- Institute of Analytical Chemistry and Food Chemistry, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
15
|
Optimized conditions for high-performance liquid chromatography analysis of oligosaccharides using 7-amino-4-methylcoumarin as a reductive amination reagent. J Chromatogr A 2008; 1203:137-45. [DOI: 10.1016/j.chroma.2008.07.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/09/2008] [Accepted: 07/09/2008] [Indexed: 11/18/2022]
|
16
|
N-glycan profiling in the study of human aging. Biogerontology 2008; 9:351-6. [PMID: 18431686 DOI: 10.1007/s10522-008-9140-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 03/31/2008] [Indexed: 02/07/2023]
Abstract
Most secreted proteins produced by the human body are modified by glycosylation. It is well known that the oligosaccharides (glycans) of glycoproteins are important for initiation of various cellular recognition signals that are essential for the maintenance of the ordered social life of each cell within a multi-cellular organism. The sugar chains can be altered by the physiological or pathophysiological condition of the cell. We describe a detailed protocol for the analysis of N-linked glycans in blood via DNA sequencing equipment-Fluorophore Assisted Carbohydrate Electrophoresis (DSA-FACE). The key features of this technique are its robustness, high throughput, high sensitivity and reliable quantification. Based on DSA-FACE technology, we previously reported that N-glycan profiling of the human serum shows substantial changes with increasing age in three major N-glycan structures. We proposed that measurement of the N-glycan level changes could provide a surrogate marker for general health or for age-related disease progression, and for monitoring the improvement of health after therapy.
Collapse
|
17
|
Gennaro LA, Salas-Solano O. On-line CE-LIF-MS technology for the direct characterization of N-linked glycans from therapeutic antibodies. Anal Chem 2008; 80:3838-45. [PMID: 18426228 DOI: 10.1021/ac800152h] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycan characterization of therapeutic proteins is of utmost importance due to the role of carbohydrates in protein stability, half-life, efficacy and mechanism of action. The primary assay for characterization and lot release of N-linked glycans on glycoprotein products at Genentech, Inc., is a capillary electrophoresis (CE) based assay, wherein PNGase F-released, APTS-labeled glycans are separated by CE with laser induced fluorescence (LIF) detection. With the growing number of new molecular entities in the pipeline, a fast and direct characterization approach is of increasing importance. This paper describes the development of CE-MS technology with on-line LIF detection that allows identification of major and minor glycan species (1-5% of total glycans) by providing accurate mass information. Data is presented for therapeutic rMAbs which presented previously unidentified, minor peaks during routine CE-LIF analysis. CE-LIF-MS was then used to provide accurate mass on these species, identifying CE peaks corresponding to sialylated (G1 + NANA, G2 + NANA), afucosylated (G0-GlcNAc-fucose) and low-level isomers of major APTS-labeled glycans G0, G1, G1' and G2.
Collapse
Affiliation(s)
- Lynn A Gennaro
- Protein Analytical Chemistry, Genentech Inc., South San Francisco, California 94080, USA.
| | | |
Collapse
|
18
|
Ikegami T, Horie K, Saad N, Hosoya K, Fiehn O, Tanaka N. Highly efficient analysis of underivatized carbohydrates using monolithic-silica-based capillary hydrophilic interaction (HILIC) HPLC. Anal Bioanal Chem 2008; 391:2533-42. [DOI: 10.1007/s00216-008-2060-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
|
19
|
Abstract
This chapter illustrates the usefulness of capillary electrophoresis (CE) for the analysis of sugar acids, that is, monosaccharides and lower oligosaccharides carrying carboxylate, sulphate or phosphate groups. In order to provide a general description of the main results and challenges in the field, some relevant applications and reviews on CE of such saccharidic compounds are tabulated. Furthermore, some detailed experimental procedures are shown, regarding the CE analysis of sugar acids released upon hydrolysis of acidic polysaccharides and of glycans linked to glycoproteins. In particular, the protocols will deal with the following compounds: (i) unsaturated, underivatized oligosaccharides from lyase-treated alginate; (ii) oligosaccharides derivatized with 4-aminobenzonitrile, arising from chemical hydrolysis of alginate; (iii) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G.
Collapse
|
20
|
Campa C, Rossi M. Capillary electrophoresis of neutral carbohydrates: mono-, oligosaccharides, glycosides. Methods Mol Biol 2008; 384:247-305. [PMID: 18392573 DOI: 10.1007/978-1-59745-376-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This chapter reports an overview of the recent advances in the analysis of neutral sugars by capillary electrophoresis (CE); furthermore, some relevant reviews and research articles in the field are tabulated. Comparison of CE with chromatography is also presented, with special attention to separation efficiency and sensitivity. The main routes aimed at pretreatment and CE analysis of uncharged mono-, oligosaccharides, and glycosides are described. Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral mono- and oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) underivatized mono- and di-saccharides analyzed using highly alkaline buffers; and (3) anomeric couples of glycosides separated using borate-based buffers.
Collapse
|
21
|
Sanz ML, Martínez-Castro I. Recent developments in sample preparation for chromatographic analysis of carbohydrates. J Chromatogr A 2007; 1153:74-89. [PMID: 17257608 DOI: 10.1016/j.chroma.2007.01.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/11/2006] [Accepted: 01/08/2007] [Indexed: 11/17/2022]
Abstract
Carbohydrates are a very important group of compounds due to their roles as structural materials, sources of energy, biological functions and environmental analytes; they are characterized by their structural diversity and the high number of isomers they present. While many advances have been made in carbohydrate analysis, the sample preparation remains difficult. This review aims to summarize the most important treatments which have been recently developed to be applied prior to the analysis of carbohydrates by chromatographic techniques. Due to the multiplicity of structures and matrices, many different techniques are required for clean-up, fractionation and derivatization. A number of new techniques which could be potentially adequate for carbohydrate characterization have also been revised.
Collapse
Affiliation(s)
- M L Sanz
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva, 3 E-28006 Madrid, Spain
| | | |
Collapse
|
22
|
Gürel A, Hızal J, Öztekin N, Erim FB. CE Determination of Carbohydrates Using a Dipeptide as Separation Electrolyte. Chromatographia 2006. [DOI: 10.1365/s10337-006-0032-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Suzuki S, Fujimori T, Yodoshi M. Recovery of free oligosaccharides from derivatives labeled by reductive amination. Anal Biochem 2006; 354:94-103. [PMID: 16701074 DOI: 10.1016/j.ab.2006.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 04/06/2006] [Accepted: 04/07/2006] [Indexed: 11/17/2022]
Abstract
This study examined chemical regeneration of free oligosaccharides from their fluorescent derivatives prepared by reductive amination with various aromatic amines. Maltose derivatives of ethyl 4-aminobenzoate (p-ABEE), 2-aminobenzonitrile (o-ABN), 4-aminobenzonitrile (p-ABN), 7-amino-4-methylcoumarin (AMC), 2-aminobenzoic acid (o-ABA), 2-aminobenzamide (o-ABAD), 2-aminopyridine (AP), and 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) were incubated at 30 degrees C with an aqueous solution of hydrogen peroxide/acetic acid. Recoveries of maltose from p-ABEE, p-ABN, and AMC derivatives were fairly good and gave approximately 90% of maltose. Recoveries of maltose from its o-substituted aniline (o-ABA, o-ABAD, and o-ABN) derivatives were 5-40%, but maltose was unrecoverable from AP and ANTS derivatives. Nevertheless, prior treatment of an AP derivative with cyanogen bromide enabled the regeneration of maltose in high yields. As an application, p-ABEE-labeled N-glycans from some glycoproteins separated on an amide column were identified by converting peak components to their AP derivatives via free saccharides and following mapping by reversed-phase chromatography.
Collapse
Affiliation(s)
- Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kinki University, Higashi-osaka, Osaka 577-8502, Japan.
| | | | | |
Collapse
|
24
|
Determination of avermectins in commercial formulations using microemulsion electrokinetic chromatography. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2006.03.110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Campa C, Coslovi A, Flamigni A, Rossi M. Overview on advances in capillary electrophoresis-mass spectrometry of carbohydrates: A tabulated review. Electrophoresis 2006; 27:2027-50. [PMID: 16736462 DOI: 10.1002/elps.200500960] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The increasing interest for carbohydrates as holder of essential bioinformations has boosted their full characterization through analytical techniques. The intent of this review is to summarize the recent trends regarding on-line and off-line CE-MS coupling for carbohydrate analysis. A statistical survey on the articles that use derivatizing agents as well as on the analyzer and type of instrument coupling (i.e. on- or off-line) is depicted. From a general overview it can be concluded that, whereas derivatization might be useful for the detection of neutral carbohydrates improving separation selectivity with volatile buffers and increasing sensitivity of the MS detection, relatively few works with derivatized carbohydrates were found; this was noticed in particular for glycosides and saccharides carrying ionizable groups, which are normally analyzed without any chemical modification. The most applied coupling is the on-line sheath-liquid interface; for on-line applications, ESI is the sole source used, whilst the most common analyzer is the IT. MS(n) is often exploited, as fragmentation increases the achieved structural information. CE-MS turned out to be mainly used for the analysis of carbohydrates in drug development (i.e. study of oligosaccharides from pathogens, carbohydrate-based drugs and drug metabolites), in nutrition and for characterization of glycans from glycoproteins. The reader will find elucidating tables regarding these recent CE-MS applications, including the main information on the analysis conditions. Comments are meant to help the immediate focus on the usefulness of the analytical technique and predict the difficulties found during analysis and, in case, their overcoming.
Collapse
|
26
|
Maeda E, Hirano K, Baba Y, Nagata H, Tabuchi M. Conformational separation of monosaccharides of glycoproteins labeled with 2-aminoacrydone using microchip electrophoresis. Electrophoresis 2006; 27:2002-10. [PMID: 16619297 DOI: 10.1002/elps.200500590] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The conformational separation of monosaccharides labeled with fluorescent 2-aminoacrydone (AMAC) was performed by electrophoresis on a plastic microchip with light-emitting diode confocal fluorescence detection. The AMAC-labeled five neutral monosaccharide mixture (D-glucose (Glc), D-mannose, D-galactose, L-fucose, and D-xylose) or two amino monosaccharide mixture (N-acetyl-D-glucosamine and N-acetyl-D-galactosamine) were well separated at pH 8.5 and 0.5% w/v methylcellulose of 200 mM borate buffer conditions using microchip electrophoresis. The separation was successfully performed considering the difference in stability of the complex between the hydroxyl residue of the monosaccharide and borate ions, and we found that 200 mM and pH 8.5 of borate buffer conditions were critical. High-speed separation for the neutral monosaccharides (50 s) and for amino monosaccharides (70 s) was attained at a 400 V/cm of electric field condition, showing all peak resolutions were greater than 0.9% and RSD of mobility were less than 1.9%. The detection limits of 0.86 microM for Glc and <1 microM for all other monosaccharides were enhanced with the addition of 0.5% w/v methylcellulose to the buffer. These attainments are fully compatible with conventional CE. The analysis of the subtle differences in the conformational stability and the value of the hydroxyl residue of the borate complex allowed the development of an efficient prospective tool for attaining high-resolution separation of monosaccharide mixtures having complicated and analogous conformations.
Collapse
Affiliation(s)
- Eiki Maeda
- Department of Molecular and Pharmaceutical Biotechnology, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
| | | | | | | | | |
Collapse
|
27
|
Paroni R, Fermo I, Molteni L, Folini L, Pastore MR, Mosca A, Bosi E. Lactulose and mannitol intestinal permeability detected by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 834:183-7. [PMID: 16530494 DOI: 10.1016/j.jchromb.2006.02.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 02/09/2006] [Accepted: 02/23/2006] [Indexed: 11/25/2022]
Abstract
Aim of this study was to set up a method by capillary electrophoresis to detect lactulose and mannitol in urine after an oral load, and to estimate the intestinal permeability in controls and in type I diabetes patients. The underivatized carbohydrates were monitored by indirect UV detection using sorbate, cetyltrimethylammonium bromide and LiOH as background electrolyte. Urines were purified by solid phase extraction, shaken with cation exchange resin, filtered and analysed. Carbohydrates migrated in <10 min in relation to their pK(a) and M(r). Controls (n = 33) and patients (n = 23) had an excretion ratio lactulose/mannitol 0.025 (0.018-0.051) and 0.067 (0.050-0.127), respectively (p < 0.01, median, interquartile range).
Collapse
Affiliation(s)
- Rita Paroni
- Department of Medicine, Surgery and Dental Science, University of Milan, H San Paolo, via Di Rudini' 8, 20142 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Rossi M, Campa C, Gamini A, Coslovi A, Donati I, Vetere A, Paoletti S. Separation of O- and C-allyl glycoside anomeric mixtures by capillary electrophoresis and high-performance liquid chromatography. J Chromatogr A 2006; 1110:125-32. [PMID: 16480732 DOI: 10.1016/j.chroma.2006.01.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 12/09/2005] [Accepted: 01/18/2006] [Indexed: 11/16/2022]
Abstract
Rapid and reliable methods for the analysis of O- and C-allyl galactopyranosides and glucopyranosides are presented, based on capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC). In MEKC, the formation of chromophoric and charged complexes between the saccharides and borate as well as the hydrophobic interactions with micelles jointly contributed to the selective separation and sensitive detection of all the investigated anomeric couples. Some non-purified synthesis mixtures of C-allyl glycosides were successfully characterised without pre-treatment. MEKC buffer conditions for which glycosides separation was successfully achieved were then exported and applied to reverse-phase liquid chromatography (RP-HPLC), for the quantitative isolation of each allyl glycoside anomer. Identification of the obtained anomeric products was performed by electrospray mass spectrometry and (13)C NMR spectroscopy. Glycoside-solvent interactions driving the selective anomeric separation were shortly addressed and discussed on the basis of sugar derivatives structural differences.
Collapse
Affiliation(s)
- Marco Rossi
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Yang Y, Breadmore MC, Thormann W. Analysis of the disaccharides derived from hyaluronic acid and chondroitin sulfate by capillary electrophoresis with sample stacking. J Sep Sci 2005; 28:2381-9. [PMID: 16342806 DOI: 10.1002/jssc.200500181] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CE conditions for monitoring the unsaturated disaccharides of hyaluronic acid (di-HA) and chondroitin sulfate (di-CS) using an alkaline tetraborate buffer, electrokinetic sample injection, and UV absorption detection at 232 nm are reported. Separations were performed in an uncoated fused-silica capillary having reversed polarity and reversed electroosmosis generated with the addition of CTAB to the buffer. The influence of various separation parameters, including the concentration of CTAB, buffer pH, concentration of tetraborate, and applied voltage, on the resolution of the two disaccharides was investigated. Baseline separation was obtained with 25 mM tetraborate at pH 10.0 and having 0.05 mM CTAB. Chloride and phosphate in the sample are beneficial for the stacking of the disaccharides, with di-HA forming a much sharper peak than di-CS. Using samples prepared in 25 mM Tris-HCl (pH 7.5) and electrokinetic injection at the cathode at -10 kV for 40 s, linear relationships between the corrected peak area and the concentration of the disaccharides have been found in the ranges of 1.0-400.0 and 0.1-1.0 microg/mL (0.2-1.0 microg/mL for di-CS), with correlation coefficients being >0.9933 in all cases. The RSDs of detection times and corrected peak areas were between 1.13-1.24 and 1.57-2.13%, respectively. Applied to human serum samples that were prepared by ethanol precipitation and depolymerization of the two polysaccharides with chondroitinase ABC reveals comigration of endogenous compounds with di-HA and a sample-dependent detection time. The di-HA content in the serum sample can be estimated via subtraction of the blank peak that is obtained without enzymatic hydrolysis.
Collapse
Affiliation(s)
- Yifang Yang
- Department of Clinical Pharmacology, University of Bern, Switzerland
| | | | | |
Collapse
|
30
|
Khandurina J, Guttman A. High Resolution Capillary Electrophoresis of Oligosaccharide Structural Isomers. Chromatographia 2005. [DOI: 10.1365/s10337-005-0606-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Monegal A, Pinyol R, Planas A. Capillary electrophoresis method for the enzymatic assay of galactosyltransferases with postreaction derivatization. Anal Biochem 2005; 346:115-23. [PMID: 16185647 DOI: 10.1016/j.ab.2005.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/02/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
Glycosyltransferases are key enzymes in glycoconjugate biosynthesis, which make them important targets for biomedical research. Among the different methodologies developed to analyze glycosyltransferase activities, fluorophore-assisted capillary electrophoresis (FACE) emerges as a powerful technique in carbohydrate analysis. Its application to monitor glycosyltransferase activity has been limited to reactions with derivatized sugars as acceptor substrates in which a charged fluorophore/chromophore must be introduced, thus requiring tedious preparative synthesis and purification for each single acceptor substrate. Here we describe a novel and general glycosyltransferase assay based on FACE using underivatized acceptor substrates. Enzyme activity is monitored by a discontinuous assay with postreaction derivatization by reductive amination with 8-aminonaphthalene-1,3,6-trisulfonic acid. The reaction mixture is directly analyzed by HPCE (high-performance capillary electrophoresis) under inverted electroosmotic conditions at pH 2.5 and 30 degrees C. After method validation, it was applied to the kinetic characterization of an alpha-1,3-galactosyltransferase, the enzyme responsible for the biosynthesis of alphaGal epitope involved in the hyperacute rejection in xenotransplantation. The absence of a label on the acceptor during the GT reaction avoids any interference of the label with the enzyme, and the postreaction derivatization does not require any purification step.
Collapse
Affiliation(s)
- Ana Monegal
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | | | | |
Collapse
|
32
|
Sato K, Sato K, Okubo A, Yamazaki S. Separation of 2-aminobenzoic acid-derivatized glycosaminoglycans and asparagine-linked glycans by capillary electrophoresis. ANAL SCI 2005; 21:21-4. [PMID: 15675510 DOI: 10.2116/analsci.21.21] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A capillary electrophoresis method was developed for the analysis of oligosaccharides combined with derivatization with 2-aminobenzoic acid. Glycosaminoglycan delta-disaccharides were effectively resolved on a fused-silica capillary tube using 150 mM borate, pH 8.5, as a running electrolyte solution. This analytical method was applied to the identification of glycosaminoglycan in combination with enzymatic digestion. The separation of N-glycans or glucose-oligomers was performed with a phosphate buffer containing polyethylene glycol or borate as an electrolyte solution. This method is expected to be useful in the determination of oligosaccharide structures in a glycoprotein.
Collapse
Affiliation(s)
- Kae Sato
- Department of Applied Biological Chemistry, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
33
|
Lamb DH, Lei QP, Hakim N, Rizzo S, Cash P. Determination of meningococcal polysaccharides by capillary zone electrophoresis. Anal Biochem 2005; 338:263-9. [PMID: 15745746 DOI: 10.1016/j.ab.2004.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Indexed: 11/16/2022]
Abstract
Meningococcal polysaccharides are medically important molecules and are the active components of vaccines against Neisseria meningiditis serogroups A, C, W135, and Y. This study demonstrates that free solution capillary zone electrophoresis (CZE) using simple phosphate/borate separation buffers is capable of separating intact, native polysaccharides from these four serogroups. Separation appeared to be robust with respect to variations in test conditions and behaved in expected ways with respect to changes in temperature, ionic strength, and addition of an organic modifier. Serogroups W135 and Y are composed of sialic acid residues alternating with either galactose or glucose, respectively. Separation of these serogroups could be achieved using phosphate buffer and was therefore not dependent on differential complexation with borate. Addition of sodium dodecyl sulfate to the separation buffer (i.e., MEKC) resulted in peak splitting for all four serogroups. Changes in polysaccharide size did not affect migration time for the size range examined, but serogroup C polysaccharide (a sialic acid homopolymer) was separable from sialic acid monosaccharide. CZE quantification of multiple lots of each of the four serogroups was compared to wet chemical determination by phosphorus or sialic acid measurement. Results from CZE determination showed good agreement with the wet chemical methods.
Collapse
Affiliation(s)
- David H Lamb
- Analytical Development Group, Aventis Pasteur, Discovery Drive, Swiftwater, PA 18370-0187, USA.
| | | | | | | | | |
Collapse
|
34
|
UV–Vis absorbance detection in capillary electrophoresis. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0166-526x(05)45005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Lamari FN, Kuhn R, Karamanos NK. Derivatization of carbohydrates for chromatographic, electrophoretic and mass spectrometric structure analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 793:15-36. [PMID: 12880852 DOI: 10.1016/s1570-0232(03)00362-3] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbohydrates, either alone or as constituents of glycoproteins, proteoglycans and glycolipids, are mediators of several cellular events and (patho)physiological processes. Progress in the "glycome" project is closely related to the analytical tools used to define carbohydrate structure and correlate structure with function. Chromatography, electrophoresis and mass spectrometry are the indispensable analytical tools of the on-going research. Carbohydrate derivatization is required for most of these analytical procedures. This review article gives an overview of derivatization methods of carbohydrates for their liquid chromatographic and electrophoretic separation, as well as the mass spectrometric characterization. Pre-column and on-capillary derivatization methods are presented with special emphasis on the derivatization of large carbohydrates.
Collapse
Affiliation(s)
- Fotini N Lamari
- Department of Chemistry, University of Patras, 261 10, Patras, Greece
| | | | | |
Collapse
|
36
|
Ruiz-Calero V, Puignou L, Galceran MT. Determination of glycosaminoglycan monosaccharides by capillary electrophoresis using laser-induced fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 791:193-202. [PMID: 12798179 DOI: 10.1016/s1570-0232(03)00214-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A newly developed capillary electrophoretic method using laser-induced fluorescence detection (CE-LIF) for the analysis of monosaccharides released from acid hydrolysis of glycosaminoglycans was studied. The method was compared with a previously published method using indirect LIF detection (CE-ILIF). For the CE-LIF method, electrophoretic conditions for the separation of the monosaccharides derivatised with 8-aminopyrene-1,3,6-trisulfonate (APTS) were optimised. The best separations were obtained using 100 mM acetate at pH 4.5 as running buffer. The influence of the injection vial volume on the precision and stability of the sample in different conditions was studied. The detection limits of the CE-LIF method were found to be 0.4-0.6 nM, while those obtained by CE-ILIF ranged from 11.4 to 14.3 microM. Other quality parameters of the method, such as run-to-run precision, day-to-day precision, and linearity were also determined. Finally, the new method was applied to the analysis of the acid hydrolysis products from a glucosaminoglycan (heparin) and a galactosaminoglycan (dermatan sulfate) and cross-contamination between the two solutions was determined. The high sensitivity of the new method allows the determination of dermatan sulfate contaminations in a heparin raw sample down to 0.04% (w/w) and broadens the practical applicability of CE-LIF for the quantitation of the endogenous levels of glycosaminoglycans in animal samples and for pharmacokinetic control after therapeutical heparin administration.
Collapse
Affiliation(s)
- Victoria Ruiz-Calero
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | |
Collapse
|
37
|
Honda S, Suzuki S, Taga A. Analysis of carbohydrates as 1-phenyl-3-methyl-5-pyrazolone derivatives by capillary/microchip electrophoresis and capillary electrochromatography. J Pharm Biomed Anal 2003; 30:1689-714. [PMID: 12485711 DOI: 10.1016/s0731-7085(02)00512-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The 1-phenyl-3-methyl-5-pyrazolone (PMP) method has many advantages over hitherto reported methods based on reductive amination and hydrazone formation. This short review summarizes the various aspects of the PMP method, including the principle of derivatization, the simplicity of derivatization procedure, the high sensitivities to UV monitoring and ESI-MS, and the diversity of separation modes in capillary electrophoresis, and presents a number of application data for carbohydrate analysis in biological samples by this method. It also describes successful automation of carbohydrate analysis by in-capillary derivatization with PMP and miniaturization to microchip electrophoresis with whole channel UV detection allowing rapid (within 1 min) analysis of small amounts of PMP derivatives of carbohydrates. Furthermore, it discusses the possibility of capillary electrochromatography in carbohydrate analysis as PMP derivatives, and proposes an in-capillary modification strategy for improving column efficiency and elution time reproducibility.
Collapse
Affiliation(s)
- Susumu Honda
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-osaka 577-8502, Japan.
| | | | | |
Collapse
|
38
|
Vynios DH, Karamanos NK, Tsiganos CP. Advances in analysis of glycosaminoglycans: its application for the assessment of physiological and pathological states of connective tissues. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:21-38. [PMID: 12450651 DOI: 10.1016/s1570-0232(02)00498-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glycosaminoglycans are a class of biological macromolecules found mainly in connective tissues as constituents of proteoglycans, covalently linked to their core protein. Hyaluronan is the only glycosaminoglycan present under its single form and possesses the ability to aggregate with the class of proteoglycans termed hyalectans. Proteoglycans are localised both at the extracellular and cellular (cell-surface and intracellular) levels and, via either their glycosaminoglycan chains or their core proteins participate in and regulate several cellular events and (patho)physiological processes. Advances in analytical separational techniques, including high-performance liquid chromatography, capillary electrophoresis and fluorophore assisted carbohydrate electrophoresis, make possible to examine alterations of glycosaminoglycans with respect to their amounts and fine structural features in various pathological conditions, thus becoming applicable for diagnosis. In this review we present the chromatographic and electromigration procedures developed to analyse and characterise glycosaminoglycans. Moreover, a critical evaluation of the biological relevance of the results obtained by the developed methodology is discussed.
Collapse
Affiliation(s)
- D H Vynios
- Laboratory of Biochemistry, Section of Organic Chemistry, Biochemistry and Natural Products, Department of Chemistry, University of Patras, 265 00 Patras, Greece
| | | | | |
Collapse
|
39
|
|
40
|
Sei K, Nakano M, Kinoshita M, Masuko T, Kakehi K. Collection of alpha1-acid glycoprotein molecular species by capillary electrophoresis and the analysis of their molecular masses and carbohydrate chains. Basic studies on the analysis of glycoprotein glycoforms. J Chromatogr A 2002; 958:273-81. [PMID: 12134825 DOI: 10.1016/s0021-9673(02)00353-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A highly heterogeneous glycoprotein, alpha1-acid glycoprotein, was resolved into their glycoforms by capillary electrophoresis using a surface-modified capillary in 20 mM acetate buffer (pH 4.2) containing 0.5% (w/v) hydroxypropylmethylcellulose. We collected the fractions containing each glycoform as nearly pure state by capillary electrophoresis, and examined the molecular masses of these glycoforms by matrix assisted laser desorption time-of-flight mass spectrometry. We also analyzed carbohydrate chains after releasing them with N-glycosidase F followed by fluorescent labeling with 8-aminopyrene-1,3,6-trisulfonate. We found that the separation of glycoforms was mostly due to the presence of multiantennary carbohydrate chains. We propose that the present technique is useful for the analysis of post translational modification of proteins with carbohydrate chains.
Collapse
Affiliation(s)
- Kazuo Sei
- Faculty of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, Japan
| | | | | | | | | |
Collapse
|
41
|
Lamari FN, Militsopoulou M, Mitropoulou TN, Hjerpe A, Karamanos NK. Analysis of glycosaminoglycan-derived disaccharides in biologic samples by capillary electrophoresis and protocol for sequencing glycosaminoglycans. Biomed Chromatogr 2002; 16:95-102. [PMID: 11857642 DOI: 10.1002/bmc.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glycosaminoglycans are biologically significant carbohydrates which either as free chains (hyaluronan) or constituents of proteoglycans (chondroitin/dermatan sulfates, heparin, heparan sulfate and keratan sulfate) participate and regulate several cellular events and (patho)physiological processes. Capillary electrophoresis, due to its high resolving power and sensitivity, has been successfully used for the analysis of glycosaminoglycans. Determination of compositional characteristics, such as disaccharide sulfation pattern, is a useful prerequisite for elucidating the interactions of glycosaminoglycans with matrix effective molecules and, therefore, essential in understanding the biological functions of proteoglycans. The interest in the field of characterization of such biologically important carbohydrates is soaring and advances in this field will signal a new revolution in the area of glycomics equivalent to that of genomics and proteomics. This review focuses on the capillary electrophoresis methods used to determine the disaccharide pattern of glycosaminoglycans in various biologic samples as well as advances in the sequence analysis of glycosaminoglycans using both chromatographic and electrophoretic techniques.
Collapse
Affiliation(s)
- F N Lamari
- Department of Chemistry, Section of Organic Chemistry, Biochemistry and Natural Products, Laboratory of Biochemistry, University of Patras, 261 10 Patras, Greece
| | | | | | | | | |
Collapse
|
42
|
Kakehi K, Kinoshita M, Nakano M. Analysis of glycoproteins and the oligosaccharides thereof by high-performance capillary electrophoresis-significance in regulatory studies on biopharmaceutical products. Biomed Chromatogr 2002; 16:103-15. [PMID: 11857643 DOI: 10.1002/bmc.150] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review describes the recent development in the analysis of glycoproteins using capillary electrophoresis with various separation techniques, and focuses especially on the analysis of recombinant glycoprotein pharmaceuticals. We include the analysis of glycoprotein multiforms (ie glycoform) as well as glycan analysis. The relationship between glycoprotein multiforms and oligosaccharide distributions in a glycoprotein sample is also discussed. Further, recent development in capillary electrophoresis-mass spectrometry is described.
Collapse
Affiliation(s)
- Kazuaki Kakehi
- Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-osaka 577-8502, Japan.
| | | | | |
Collapse
|
43
|
Lamari FN, Gioldassi XM, Mitropoulou TN, Karamanos NK. Structure analysis of lipoglycans and lipoglycan-derived carbohydrates by capillary electrophoresis and mass spectrometry. Biomed Chromatogr 2002; 16:116-26. [PMID: 11857644 DOI: 10.1002/bmc.149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lipoglycans (lipopolysaccharides, lipoarabinomannans and glycolipids) are unique components of the cell membrane of all cells and the envelope of many bacteria. They play important roles in determining cell-environment interactions, which, however, are only partly understood due to incomplete description of their structural components, lipids and glycans. Capillary electrophoresis is an analytical technique of high separation efficiency and minimum sample requirements and has successfully been used for the analysis of several molecules of biological importance: proteins, nucleic acids and glycoconjugates. In the last years, a few applications of capillary electrophoresis to the analysis of lipoglycans have been reported. Analysis of lipoglycans involves the study of two parameters: intact molecules and carbohydrate parts. The conjunction of capillary electrophoresis and mass spectroscopy not only enhances the detection sensitivity, but also provides structural information on these structurally complex molecules. The interest in the field is rising and the results from the exact determination on the lipoglycan structure are expected to improve our understanding of the molecular mechanism of lipoglycan binding to proteins and cells of host organisms as well as their relationship to the virulence and pathogenesis of bacteria. In this report, an overview of the capillary electrophoresis methods used to analyze and characterize the intact lipoglycans as well as their carbohydrate parts is presented.
Collapse
Affiliation(s)
- Fotini N Lamari
- Department of Chemistry, Section of Organic Chemistry, Biochemistry and Natural Products, Laboratory of Biochemistry, University of Patras, 261 10 Patras, Greece.
| | | | | | | |
Collapse
|
44
|
Strousopoulou K, Militsopoulou M, Stagiannis K, Lamari FN, Karamanos NK. A capillary zone electrophoresis method for determining N-acetylneuraminic acid in glycoproteins and blood sera. Biomed Chromatogr 2002; 16:146-50. [PMID: 11857648 DOI: 10.1002/bmc.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A simple capillary zone electrophoresis (CZE) method for the determination of the content of the major sialic acid form N-acetylneuraminic acid (Neu5Ac) in glycoproteins was established. The present method utilizes a simplified hydrolysis-purification procedure consisting of mild acid hydrolysis (25 mM trifluoroacetic acid for 2h at 80 degrees C) to release Neu5Ac and ultrafiltration on Centricon-3 membrane to remove the obtained asialoglycoproteins and other macromolecules present in biologic samples. Derivatization with benzoic anhydride at 80 degrees C for 20 min resulted in complete conversion of Neu5Ac to per-O-benzoylated Neu5Ac. CZE analysis was performed using the operating buffer 25mM phosphate, pH 3.5, containing 50% (v/v) acetonitrile as organic modifier at 30 kV, and detection of the per-O-benzoylated Neu5Ac at 231 nm. The method showed excellent repeatability (RDS<1.98%) and a linearity range from 5 microg/mL to 5mg/mL with a detection limit of 2 microM. Application of the method to microanalysis of human alpha(1)-acid glycoprotein and blood serum samples showed excellent agreement with previously published values, suggesting a high precision for the developed CZE method.
Collapse
Affiliation(s)
- K Strousopoulou
- Department of Chemistry, Section of Organic Chemistry, Biochemistry and Natural Products, Laboratory of Biochemistry, University of Patras, 26110 Patras, Greece
| | | | | | | | | |
Collapse
|
45
|
Ferro V, Li C, Fewings K, Palermo MC, Linhardt RJ, Toida T. Determination of the composition of the oligosaccharide phosphate fraction of Pichia (Hansenula) holstii NRRL Y-2448 phosphomannan by capillary electrophoresis and HPLC. Carbohydr Res 2002; 337:139-46. [PMID: 11814445 DOI: 10.1016/s0008-6215(01)00300-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The promising new anticancer agent, PI-88, is prepared by the sulfonation of the oligosaccharide phosphate fraction of the extracellular phosphomannan produced by the yeast Pichia (Hansenula) holstii NRRL Y-2448. The composition of the oligosaccharide phosphate fraction was determined by capillary electrophoresis (CE) with indirect UV detection using 6 mM potassium sorbate at pH 10.3 as the background electrolyte. Further confirmation of the composition was obtained by HPLC analysis of a sample dephosphorylated by treatment with alkaline phosphatase. The structure of the hexasaccharide component has been determined by isolation and NMR spectroscopic analysis of its dephosphorylated derivative. Additionally, the structure of a second, previously undetected tetrasaccharide component (a hexosamine) has been determined by isolation and NMR spectroscopic analysis of the acetate of its dephosphorylated derivative. It is demonstrated that CE is an ideal method for the quality control of the oligosaccharide phosphate fraction for use in the production of PI-88.
Collapse
Affiliation(s)
- Vito Ferro
- Department of Research & Development, Progen Industries Ltd, PO Box 28, Richlands BC, Qld 4077, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Gennaro LA, Delaney J, Vouros P, Harvey DJ, Domon B. Capillary electrophoresis/electrospray ion trap mass spectrometry for the analysis of negatively charged derivatized and underivatized glycans. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:192-200. [PMID: 11803540 DOI: 10.1002/rcm.564] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The increasing interest in the development of glycoproteins for therapeutic purposes has created a greater demand for methods to characterize the sugar moieties bound to them. Traditionally, released carbohydrates are derivatized using such methods as permethylation or fluorescent tagging prior to analysis by high performance liquid chromatography (HPLC), capillary electrophoresis (CE), or direct infusion mass spectrometry. However, little research has been performed using CE with on-line mass spectrometry (MS) detection. The CE separation of neutral oligosaccharides requires the covalent attachment of a charged species for electrophoretic migration. Among charged labels which have shown promise in assisting CE and HPLC separation is the fluorophore 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS). This report describes the qualitative profiling of charged ANTS-derivatized and underivatized complex glycans by CE with on-line electrospray ion trap mass spectrometry. Several neutral standard glycans including a maltooligosaccharide ladder were derivatized with ANTS and subjected to CE/UV and CE/MS using low pH buffers consisting of citric and 6-aminocaproic acid salts. The ANTS-derivatized species were detected as negative ions, and multiple stage MS analysis provided valuable structural information. Fragment ions were easily identified, showing promise for the identification of unknowns. N-Linked glycans released from bovine fetuin were used to demonstrate the applicability of ANTS derivatization followed by CE/MS for the analysis of negatively charged glycans. Analyses were performed on both underivatized and ANTS-derivatized species, and sialylated glycans were separated and detected in both forms. The ability of the ion trap mass spectrometer to perform multiple stage analysis was exploited, with MS5 information obtained on selected glycans. This technique presents a complementary method to existing methodologies for the profiling of glycan mixtures.
Collapse
Affiliation(s)
- Lynn A Gennaro
- Department of Chemistry and Barnett Institute, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
47
|
Tran NT, Cabanes-Macheteau M, Taverna M. Chapter 20 Analysis of glycoproteins and their glycopeptide and glycan fragments by electrophoresis and capillary electrophoresis. JOURNAL OF CHROMATOGRAPHY LIBRARY 2002. [DOI: 10.1016/s0301-4770(02)80045-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
48
|
Callewaert N, Geysens S, Molemans F, Contreras R. Ultrasensitive profiling and sequencing of N-linked oligosaccharides using standard DNA-sequencing equipment. Glycobiology 2001; 11:275-81. [PMID: 11358876 DOI: 10.1093/glycob/11.4.275] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The analysis of protein-linked glycans is of increasing importance, both in basic glycobiological research and during the production process of glycoprotein pharmaceuticals. In many cases, the amount of glycoprotein available for typing the glycans is very low. This, combined with the high branching complexity typical for this class of compounds, makes glycan typing a challenging task. We present here methodology allowing the medium-throughput analysis of N-glycans derived from low picomole amounts of glycoproteins using the standard DNA-sequencing equipment available in any life sciences laboratory. The high sensitivity of the overall analytical process (from glycoprotein to results) is obtained using state-of-the-art deglycosylation procedures combined with a highly efficient and reproducible novel postderivatization cleanup step involving Sephadex G10 packed 96-well filterplates. All sample preparation steps (enzymatic deglycosylation with PNGase F, desalting, derivatization with 8-amino-1,3,6-pyrenetrisulfonic acid, and postderivatization cleanup) are performed using 96-well-based plates. This integrated sample preparation scheme is also compatible with capillary electrophoresis and MALDI-TOF-MS platforms already in use in some glycobiology labs and anticipates the higher throughput that will be offered by the capillary-array-based DNA sequencers currently penetrating the market. The described technology should bring high-performance glycosylation analysis within reach of each life sciences lab and thus help expedite the pace of discovery in the field of glycobiology.
Collapse
Affiliation(s)
- N Callewaert
- Unit of Fundamental and Applied Molecular Biology, Department of Molecular Biology, Ghent University and Flanders Interuniversity Institute for Biotechnology, K.L.-Ledeganckstraat 35, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
49
|
Suzuki S, Tanaka R, Takada K, Inoue N, Yashima Y, Honda A, Honda S. Analysis of sialo-N-glycans in glycoproteins as 1-phenyl-3-methyl-5-pyrazolone derivatives by capillary electrophoresis. J Chromatogr A 2001; 910:319-29. [PMID: 11261727 DOI: 10.1016/s0021-9673(00)01228-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A method for the analysis of the sialo-N-glycans in glycoproteins was established by the electrokinetic chromatography mode of capillary electrophoresis (CE) in sodium dodecyl sulfate (SDS) micelles as 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatives, using sialo-N-glycans in fetuin as a model. Six major and some minor peaks were observed for the N-glycans in fetuin, which were well separated from each other using 50 mM phosphate buffer, pH 6.0, containing SDS to a concentration of 30 mM in an uncoated fused-silica capillary, and these peaks were assigned to sialo-N-glycans having either of the biantennary or beta1-3/beta1-4 linked galactose-containing complex type triantennary N-glycans as the basic structures, by an indirect method based on the assignment of the peaks in high-performance liquid chromatography separated in parallel with CE and peak collation between these two separation methods. The attaching position of the sialic acid residue was determined using the linkage preference of neuraminidase isozymes. The established system is considered to be useful for routine analysis of microheterogeneity of the carbohydrate moiety of this model glycoprotein from the following reasons: (1) the derivatization with PMP proceeds quantitatively under mild conditions without causing release of the sialic acid residue, (2) the derivatives can be sensitively detected by UV absorption, (3) the procedure is simple, rapid and reproducible. Preliminary results of N-glycan analysis for several other glycoproteins under these conditions are also presented.
Collapse
Affiliation(s)
- S Suzuki
- Faculty of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Delaney J, Vouros P. Liquid chromatography ion trap mass spectrometric analysis of oligosaccharides using permethylated derivatives. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:325-334. [PMID: 11241762 DOI: 10.1002/rcm.230] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reversed phase liquid chromatography was combined with the multiple stage mass analysis capability of an ion trap mass spectrometer for the characterization of permethylated oligosaccharide mixtures. The new method was used to separate the components of an unlabeled permethylated maltooligomer ladder, a 2-aminobenzamide-labeled (2-AB) maltooligomer ladder, a complex mixture of 2AB-labeled bi- (B), tri- (T), and tetraantennary (Q) standards, and a mixture of recombinant glycoprotein carbohydrates from soluble CD4 with varying sialic acid (S) content. Using reversed phase HPLC, permethylated mixture components including alpha and beta anomers were separated based on their structures. Fluorescent labeling with 2-aminobenzamide prior to permethylation was employed for off-line method development, but was not necessarily required for mass spectral analysis, as permethylation alone improved the ionization and fragmentation characteristics of the molecules. Antennae composition of permethylated derivatives was determined in MS(2) where the fragmentation patterns of the Y- and B-ion series predominated, and then further evaluated in MS(3), which provided additional information on branching obtained from A and X cross-ring fragmentation.
Collapse
Affiliation(s)
- J Delaney
- Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|