1
|
Maus A, Mignon R, Basile F. Enhanced protein identification using graphite-modified MALDI plates for offline LC-MALDI-MS/MS bottom-up proteomics. Anal Biochem 2018; 545:31-37. [PMID: 29326070 DOI: 10.1016/j.ab.2018.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
Abstract
The use of offline liquid chromatography-matrix assisted laser desorption/ionization (LC-MALDI) tandem mass spectrometry (MS/MS) for bottom-up proteomics offers advantages in terms of cost, ease of use, and the time-decoupled nature of the separation step and the mass analysis. A method was developed to improve the capabilities of LC-MALDI-MS/MS in terms of protein identification in a bottom-up proteomic workflow. Enhanced protein identification is achieved by an increase in the MALDI signal intensity of the precursor peptides brought about by coating the MALDI plate with a thin film of graphite powder. Using the Escherichia coli proteome, it is demonstrated that the graphite-modified MALDI plates used in an offline LC-MALDI-MS/MS bottom-up protocol led to a 50-135% increase in the number of peptide identifications, and a concomitant 21%-105% increase in the number of proteins inferred. We identify factors that lead to improvements in peptide sequence identifications and in the number of unique proteins identified when compared to using an unmodified MALDI plate. These improvements are achieved using a low cost approach that it is easy to implement, requires no hardware/protocol modification, it is compatible with LC and adds no additional analysis time.
Collapse
Affiliation(s)
- Anthony Maus
- Department of Chemistry, University of Wyoming, 1000 E. University Ave., Laramie, WY 82072, United States
| | - Rudolph Mignon
- Department of Chemistry, University of Wyoming, 1000 E. University Ave., Laramie, WY 82072, United States
| | - Franco Basile
- Department of Chemistry, University of Wyoming, 1000 E. University Ave., Laramie, WY 82072, United States.
| |
Collapse
|
2
|
O'Neill JR, Pak HS, Pairo-Castineira E, Save V, Paterson-Brown S, Nenutil R, Vojtěšek B, Overton I, Scherl A, Hupp TR. Quantitative Shotgun Proteomics Unveils Candidate Novel Esophageal Adenocarcinoma (EAC)-specific Proteins. Mol Cell Proteomics 2017; 16:1138-1150. [PMID: 28336725 PMCID: PMC5461543 DOI: 10.1074/mcp.m116.065078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/26/2017] [Indexed: 12/11/2022] Open
Abstract
Esophageal cancer is the eighth most common cancer worldwide and the majority of patients have systemic disease at presentation. Esophageal adenocarcinoma (OAC), the predominant subtype in western countries, is largely resistant to current chemotherapy regimens. Selective markers are needed to enhance clinical staging and to allow targeted therapies yet there are minimal proteomic data on this cancer type. After histological review, lysates from OAC and matched normal esophageal and gastric samples from seven patients were subjected to LC MS/MS after tandem mass tag labeling and OFFGEL fractionation. Patient matched samples of OAC, normal esophagus, normal stomach, lymph node metastases and uninvolved lymph nodes were used from an additional 115 patients for verification of expression by immunohistochemistry (IHC). Over six thousand proteins were identified and quantified across samples. Quantitative reproducibility was excellent between technical replicates and a moderate correlation was seen across samples with the same histology. The quantitative accuracy was verified across the dynamic range for seven proteins by immunohistochemistry (IHC) on the originating tissues. Multiple novel tumor-specific candidates are proposed and EPCAM was verified by IHC. This shotgun proteomic study of OAC used a comparative quantitative approach to reveal proteins highly expressed in specific tissue types. Novel tumor-specific proteins are proposed and EPCAM was demonstrated to be specifically overexpressed in primary tumors and lymph node metastases compared with surrounding normal tissues. This candidate and others proposed in this study could be developed as tumor-specific targets for novel clinical staging and therapeutic approaches.
Collapse
Affiliation(s)
- J Robert O'Neill
- From the ‡Edinburgh Cancer Research Centre at the Institute of Genetics and Molecular Medicine, Edinburgh University; Robert.o'.,§Department of Surgery, Royal Infirmary of Edinburgh
| | - Hui-Song Pak
- ¶Department of Human Protein Sciences, Faculty of Medicine, University of Geneva
| | - Erola Pairo-Castineira
- ‖Centre for Medical Informatics, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh.,**MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh University
| | - Vicki Save
- ‡‡Department of Pathology, Royal Infirmary of Edinburgh
| | | | - Rudolf Nenutil
- §§Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno
| | - Bořivoj Vojtěšek
- §§Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno
| | - Ian Overton
- ‖Centre for Medical Informatics, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh.,**MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh University
| | - Alex Scherl
- ¶Department of Human Protein Sciences, Faculty of Medicine, University of Geneva
| | - Ted R Hupp
- From the ‡Edinburgh Cancer Research Centre at the Institute of Genetics and Molecular Medicine, Edinburgh University.,§§Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno
| |
Collapse
|
3
|
Mataj A, Boysen RI, Hearn MTW. Phosphoprotein Analysis by MALDI-TOF Mass Spectrometry using On-Probe Tandem Proteolysis and Dephosphorylation. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1229785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Agron Mataj
- Australian Center for Research on Separation Science, School of Chemistry, Monash University, Melbourne, Victoria, Australia
| | - Reinhard I. Boysen
- Australian Center for Research on Separation Science, School of Chemistry, Monash University, Melbourne, Victoria, Australia
| | - Milton T. W. Hearn
- Australian Center for Research on Separation Science, School of Chemistry, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Gao M, Qi D, Zhang P, Deng C, Zhang X. Development of multidimensional liquid chromatography and application in proteomic analysis. Expert Rev Proteomics 2014; 7:665-78. [DOI: 10.1586/epr.10.49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Separation of intact proteins by using polyhedral oligomeric silsesquioxane based hybrid monolithic capillary columns. J Chromatogr A 2013; 1317:138-47. [DOI: 10.1016/j.chroma.2013.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 12/22/2022]
|
6
|
Urban PL, Amantonico A, Zenobi R. Lab-on-a-plate: extending the functionality of MALDI-MS and LDI-MS targets. MASS SPECTROMETRY REVIEWS 2011; 30:435-478. [PMID: 21254192 DOI: 10.1002/mas.20288] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We review the literature that describes how (matrix-assisted) laser desorption/ionization (MA)LDI target plates can be used not only as sample supports, but beyond that: as functional parts of analytical protocols that incorporate detection by MALDI-MS or matrix-free LDI-MS. Numerous steps of analytical procedures can be performed directly on the (MA)LDI target plates prior to the ionization of analytes in the ion source of a mass spectrometer. These include homogenization, preconcentration, amplification, purification, extraction, digestion, derivatization, synthesis, separation, detection with complementary techniques, data storage, or other steps. Therefore, we consider it helpful to define the "lab-on-a-plate" as a format for carrying out extensive sample treatment as well as bioassays directly on (MA)LDI target plates. This review introduces the lab-on-plate approach and illustrates it with the aid of relevant examples from the scientific and patent literature.
Collapse
Affiliation(s)
- Pawel L Urban
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
7
|
Protein- versus peptide fractionation in the first dimension of two-dimensional high-performance liquid chromatography-matrix-assisted laser desorption/ionization tandem mass spectrometry for qualitative proteome analysis of tissue samples. J Chromatogr A 2010; 1217:6159-68. [PMID: 20810122 DOI: 10.1016/j.chroma.2010.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 11/21/2022]
Abstract
The availability of robust and highly efficient separation methods represents a major requirement for proteome analysis. This study investigated the characteristics of two different gel-free proteomic approaches to the fractionation of proteolytic peptides and intact proteins, respectively, in a first separation dimension. Separation and mass spectrometric detection by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) were performed at the peptide level in both methods. Bottom-up analysis (BU) was carried out employing well established peptide fractionation in the first separation dimension by strong cation-exchange chromatography (SCX), followed by ion-pair reversed-phase chromatography (IP-RPC) in the second dimension. In the semi-top-down approach (STD), which involved intact protein fractionation in the first dimension, the separation mode in both dimensions was IP-RPC utilizing monolithic columns. Application of the two approaches to the proteome analysis of proteins extracted from a tumor tissue revealed that the BU method identified more proteins (1245 in BU versus 920 in STD) while STD analysis offered higher sequence coverage (14.8% in BU versus 17.5% in STD on average). The identification of more basic and larger proteins was slightly favored in the BU approach, most probably due to higher losses of these proteins during intact protein handling and separation in the STD method. A significant degree of complementarity was revealed by an approximately 33% overlap between one BU and STD replicate, while 33% each of the protein identifications were unique to both methods. In the STD method, peptides obtained upon digestion of the proteins contained in fractions of the first separation dimension covered a broad elution window in the second-dimension separation, which demonstrates a high degree of "pseudo-orthogonality" of protein and peptide separation by IP-RPC in both separation dimensions.
Collapse
|
8
|
Meyer B, Papasotiriou DG, Karas M. 100% protein sequence coverage: a modern form of surrealism in proteomics. Amino Acids 2010; 41:291-310. [DOI: 10.1007/s00726-010-0680-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/25/2010] [Indexed: 01/11/2023]
|
9
|
Peš O, Preisler J. Off-line coupling of microcolumn separations to desorption mass spectrometry. J Chromatogr A 2010; 1217:3966-77. [DOI: 10.1016/j.chroma.2010.02.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 01/13/2023]
|
10
|
Liu WJ, Qin HL, Ma YL, Peng JY. Heat shock protein 27: a potential biomarker for colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2010; 18:1237-1243. [DOI: 10.11569/wcjd.v18.i12.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To find specific biomarkers for colorectal carcinoma using a proteomic method to provide clues to early diagnosis, prognosis and therapy of colorectal carcinoma as well as to understanding the molecular mechanisms governing cancer progression.
METHODS: Six colorectal carcinoma patients were included in the study. High-resolution two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were utilized for the identification of proteins differentially expressed between cancer and adjacent non-cancerous tissue. The differential expression of heat shock protein 27 (HSP27) was further verified by Western blot and immunohistochemistry.
RESULTS: Comparative analysis of 2-DE maps revealed 42 differentially expressed proteins between the two groups. Ten differential proteins were further identified by mass spectrometry, including HSP27, disulfide isomerase (DI), heterogeneous nuclear ribonucleoprotein A2/B1 (HnRNP A2/B1), triosephosphate isomerase (TIM), pyruvate kinase, etc. Western blot and immunohistochemistry analyses confirmed the overexpression of HSP27 in colorectal carcinoma. These results indicate that HSP27 may be a potential biomarker for colorectal cancer.
CONCLUSION: Many differential proteins are identified between cancer and adjacent non-cancerous tissue in patients with colorectal carcinoma. HSP27 might be a potential biomarker for early diagnosis, therapy and prognosis of colorectal carcinoma.
Collapse
|
11
|
Identification of HSP27 as a potential tumor marker for colorectal cancer by the two-dimensional polyacrylamide gel electrophoresis. Mol Biol Rep 2009; 37:3207-16. [PMID: 19842058 DOI: 10.1007/s11033-009-9903-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 10/02/2009] [Indexed: 12/20/2022]
Abstract
The identification of specific biomarkers for colorectal cancer would provide the basis for early diagnosis, prognosis, therapy, as well as clues for understanding the molecular mechanisms governing cancer progression. This study was designed to use comparative proteomics technology to find the differentially expressed proteins between human colorectal carcinoma and the corresponding normal tumor-adjacent colorectal tissues. We have used the highly sensitive two-dimensional gel electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) for the identification of proteins differentially expressed in tumoral and neighboring normal mucosa. We have detected differences in abundance of 42 proteins with statistical variance of the tumor versus normal spot volume ratio within the 95th confidence level (Student's t-test; P < 0.05). 10 out of 42 analyzed proteins were unambiguously identified by MS coupled with database interrogation as being differentially expressed in colorectal cancer. Of the 10 newly implicated proteins, HSP27 was chosen for detailed analysis. Preliminary studies demonstrated that the differentially expressed proteins found by 2-DE could be confirmed and validated by western blotting and immunohistochemistry analyses in those few cases. The results suggest that HSP27 might be a potential biomarker for early diagnosis, prognosis, monitoring in the therapy of colorectal carcinoma.
Collapse
|
12
|
Abstract
Proteomics refers to the study of the entire set of proteins in a given cell or tissue. With the extensive development of protein separation, mass spectrometry, and bioinformatics technologies, clinical proteomics has shown its potential as a powerful approach for biomarker discovery, particularly in the area of oncology. More than 130 exploratory studies have defined candidate markers in serum, gastrointestinal (GI) fluids, or cancer tissue. In this article, we introduce the commonly adopted proteomic technologies and describe results of a comprehensive review of studies that have applied these technologies to GI oncology, with a particular emphasis on developments in the last 3 years. We discuss reasons why the more than 130 studies to date have had little discernible clinical impact, and we outline steps that may allow proteomics to realize its promise for early detection of disease, monitoring of disease recurrence, and identification of targets for individualized therapy.
Collapse
Affiliation(s)
- Ying Lin
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA USA
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - William S. Dynan
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA USA
| | - Jeffrey R. Lee
- Department of Pathology, Medical College of Georgia, Augusta, GA USA
- Department of Pathology, Veterans Affairs Medical Center, Augusta, GA USA
| | - Zhao-Hua Zhu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Robert R. Schade
- Division of Gastroenterology/Hepatology, Department of Medicine, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912 USA
| |
Collapse
|
13
|
Yoo C, Suckau D, Sauerland V, Ronk M, Ma M. Toward top-down determination of PEGylation site using MALDI in-source decay MS analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:326-333. [PMID: 19019698 DOI: 10.1016/j.jasms.2008.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/10/2008] [Accepted: 10/13/2008] [Indexed: 05/27/2023]
Abstract
A novel matrix assisted laser desorption/ionization (MALDI)-based mass spectrometric approach has been evaluated to rapidly analyze a custom designed PEGylated peptide that is 31 residues long and conjugated with 20 kDa linear polyethylene glycol (PEG) at the side chain of Lys. MALDI-TOF MS provided sufficiently high resolution to allow observation of each of the oligomers of the heterogeneous PEGylated peptide (m/Deltam of ca. 500), while a typical ESI-MS spectrum of this molecule was extremely complex and unresolved. Reflector in-source decay (reISD) analysis using MALDI-TOF MS was attempted to identify the PEGylation site at intact molecular level without any sample treatment. An reISD spectrum of the free peptide was observed with abundant c-, y-, and [z + 2]-fragment ion series, whereas, in the fragmented PEGylated peptide, the fragment ion series were truncated at the residue where PEG was attached. Therefore, a direct comparison of these top-down reISD spectra suggested the location of the PEGylation site. Results from this study demonstrate a clear analytical utility of the ISD technique to characterize structural aspects of heterogeneous biomolecules.
Collapse
Affiliation(s)
- Chul Yoo
- Analytical Research and Development, Amgen Inc., Thousand Oaks, California 91320, USA.
| | | | | | | | | |
Collapse
|
14
|
Analysis of protein glycosylation and phosphorylation using liquid phase separation, protein microarray technology, and mass spectrometry. Methods Mol Biol 2009; 492:321-51. [PMID: 19241043 PMCID: PMC2921194 DOI: 10.1007/978-1-59745-493-3_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Protein glycosylation and phosphorylation are very common posttranslational modifications. The alteration of these modifications in cancer cells is closely related to the onset and progression of cancer and other disease states. In this protocol, strategies for monitoring the changes in protein glycosylation and phosphorylation in serum or tissue cells on a global scale and specifically characterizing these alterations are included. The technique is based on lectin affinity enrichment for glycoproteins, all liquid-phase two-dimensional fractionation, protein microarray, and mass spectrometry technology. Proteins are separated based on pI in the first dimension using chromatofocusing (CF) or liquid isoelectric focusing (IEF) followed by the second-dimension separation using nonporous silica RP-HPLC. Five lectins with different binding specificities to glycan structures are used for screening glycosylation patterns in human serum through a biotin streptavidin system. Fluorescent phosphodyes and phosphospecific antibodies are employed to detect specific phosphorylated proteins in cell lines or human tissues. The purified proteins of interest are identified by peptide sequencing. Their modifications including glycosylation and phosphorylation could be further characterized by mass-spectrometry-based approaches. These strategies can be used in biological samples for large-scale glycoproteome/phosphoproteome screening as well as for individual protein modification analysis.
Collapse
|
15
|
Getie-Kebtie M, Franke P, Aksamit R, Alterman MA. Experimental Evaluation of Protein Identification by an LC/MALDI/On-Target Digestion Approach. J Proteome Res 2008; 7:3697-707. [DOI: 10.1021/pr800258k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Melkamu Getie-Kebtie
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 29A, Room 2D12, 8800 Rockville Pike, Bethesda, Maryland 20892
| | - Peter Franke
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 29A, Room 2D12, 8800 Rockville Pike, Bethesda, Maryland 20892
| | - Robert Aksamit
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 29A, Room 2D12, 8800 Rockville Pike, Bethesda, Maryland 20892
| | - Michail A. Alterman
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 29A, Room 2D12, 8800 Rockville Pike, Bethesda, Maryland 20892
| |
Collapse
|
16
|
Wu R, Hu L, Wang F, Ye M, Zou H. Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. J Chromatogr A 2008; 1184:369-92. [DOI: 10.1016/j.chroma.2007.09.022] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/06/2007] [Accepted: 09/11/2007] [Indexed: 12/28/2022]
|
17
|
Gao M, Yu W, Zhang Y, Yan G, Deng C, Yang P, Zhang X. Integrated strong cation exchange/capillary reversed-phase liquid chromatography/on-target digestion coupled with mass spectrometry for identification of intact human liver tissue proteins. Analyst 2008; 133:1261-7. [DOI: 10.1039/b803388a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Hu L, Ye M, Jiang X, Feng S, Zou H. Advances in hyphenated analytical techniques for shotgun proteome and peptidome analysis--a review. Anal Chim Acta 2007; 598:193-204. [PMID: 17719892 DOI: 10.1016/j.aca.2007.07.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 01/30/2023]
Abstract
Proteomics is defined as the analysis of part or all of the protein components of a complex biological system (a cell, organ or tissue) at a given moment. Due to the huge number of proteins encoded by the genome, novel analytical techniques must be developed to meet the need of large scale analysis. This has led to the hyphenation of multiple techniques to achieve this object. Here current status of the hyphenated analytical techniques of one-dimensional and multidimensional liquid chromatography-mass spectrometry for shotgun proteomic analysis is reviewed, and on-line techniques for automated sample preparation and injection are also covered. In addition, the hyphenated techniques for peptidome analysis are also covered.
Collapse
Affiliation(s)
- Lianghai Hu
- National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | | | | | | | | |
Collapse
|
19
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:689-700. [PMID: 17474104 DOI: 10.1002/jms.1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
20
|
Josic D, Clifton JG. Use of monolithic supports in proteomics technology. J Chromatogr A 2007; 1144:2-13. [PMID: 17174320 DOI: 10.1016/j.chroma.2006.11.082] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 11/26/2006] [Accepted: 11/28/2006] [Indexed: 11/26/2022]
Abstract
An overview on the utilization of monoliths in proteomics technology will be given. Both silica- and polymer-based monoliths have broad use for microseparation of tryptic peptides in reversed-phase (RP) mode before identification by mass spectrometry (MS) or by MS/MS. For two-dimensional (2D) LC separation of peptides before MS or MS/MS analysis, a combination of ion-exchange, usually cation-exchange (CEX) chromatography with RP chromatography on monolithic supports can be employed. Immobilized metal ion affinity chromatography monoliths with immobilized Fe3+-ions are used for the isolation of phosphopeptides. Monoliths with immobilized affinity ligands are usually applied to the rapid separation of proteins and peptides. Miniaturized reactors with immobilized proteolytic enzymes are utilized for rapid on- or offline digestion of isolated proteins or protein mixtures prior to identification by LC-MS/MS. Monoliths also have broad potential for application in sample preparation, prior to further proteomic analyses. Monolithic supports with large pore sizes can be exploited for the isolation of nanoparticles, such as cells, organelles, viruses and protein aggregates. The potential for further adoption of monolithic supports in protein separation and enrichment of low abundance proteins prior to proteolytic digestion and final LC-MS/MS protein identification will be discussed.
Collapse
Affiliation(s)
- Djuro Josic
- Proteomics Core, COBRE Center for Cancer Research Development, Rhode Island Hospital, CORO West, One Hoppin St., Providence, RI 02903, USA.
| | | |
Collapse
|