1
|
Vahid H, Scacchi A, Sammalkorpi M, Ala-Nissila T. Nonmonotonic electrophoretic mobility of rodlike polyelectrolytes by multivalent coions in added salt. Phys Rev E 2024; 109:014501. [PMID: 38366448 DOI: 10.1103/physreve.109.014501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/30/2023] [Indexed: 02/18/2024]
Abstract
It is well established that when multivalent counterions or salts are added to a solution of highly charged polyelectrolytes (PEs), correlation effects can cause charge inversion of the PE, leading to electrophoretic mobility (EM) reversal. In this work, we use coarse-grained molecular-dynamics simulations to unravel the less understood effect of coion valency on EM reversal for rigid DNA-like PEs. We find that EM reversal induced by multivalent counterions is suppressed with increasing coion valency in the salt added and eventually vanishes. Further, we find that EM is enhanced at fixed low salt concentrations for salts with monovalent counterions when multivalent coions with increasing valency are introduced. However, increasing the salt concentration causes a crossover that leads to EM reversal which is enhanced by increasing coion valency at high salt concentration. Remarkably, this multivalent coion-induced EM reversal persists even for low values of PE linear charge densities where multivalent counterions alone cannot induce EM reversal. These results facilitate tuning PE-PE interactions and self-assembly with both coion and counterion valencies.
Collapse
Affiliation(s)
- Hossein Vahid
- Department of Applied Physics, Aalto University, P.O. Box 11000, 00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Alberto Scacchi
- Department of Applied Physics, Aalto University, P.O. Box 11000, 00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Tapio Ala-Nissila
- Department of Applied Physics, Aalto University, P.O. Box 11000, 00076 Aalto, Finland
- Quantum Technology Finland Center of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11000, 00076 Aalto, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
2
|
Yang X, Buyukdagli S, Scacchi A, Sammalkorpi M, Ala-Nissila T. Theoretical and computational analysis of the electrophoretic polymer mobility inversion induced by charge correlations. Phys Rev E 2023; 107:034503. [PMID: 37073074 DOI: 10.1103/physreve.107.034503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/14/2023] [Indexed: 04/20/2023]
Abstract
Electrophoretic (EP) mobility reversal is commonly observed for strongly charged macromolecules in multivalent salt solutions. This curious effect takes place, e.g., when a charged polymer, such as DNA, adsorbs excess counterions so that the counterion-dressed surface charge reverses its sign, leading to the inversion of the polymer drift driven by an external electric field. In order to characterize this seemingly counterintuitive phenomenon that cannot be captured by electrostatic mean-field theories, we adapt here a previously developed strong-coupling-dressed Poisson-Boltzmann approach to the cylindrical geometry of the polyelectrolyte-salt system. Within the framework of this formalism, we derive an analytical polymer mobility formula dressed by charge correlations. In qualitative agreement with polymer transport experiments, this mobility formula predicts that the increment of the monovalent salt, the decrease of the multivalent counterion valency, and the increase of the dielectric permittivity of the background solvent suppress charge correlations and increase the multivalent bulk counterion concentration required for EP mobility reversal. These results are corroborated by coarse-grained molecular dynamics simulations showing how multivalent counterions induce mobility inversion at dilute concentrations and suppress the inversion effect at large concentrations. This re-entrant behavior, previously observed in the aggregation of like-charged polymer solutions, calls for verification by polymer transport experiments.
Collapse
Affiliation(s)
- Xiang Yang
- Department of Applied Physics, Aalto University, P. O. Box 11000, FI-00076 Aalto, Finland
| | | | - Alberto Scacchi
- Department of Applied Physics, Aalto University, P. O. Box 11000, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland
| | - Tapio Ala-Nissila
- Department of Applied Physics, Aalto University, P. O. Box 11000, FI-00076 Aalto, Finland
- Quantum Technology Finland Center of Excellence, Department of Applied Physics, Aalto University, P. O. Box 11000, FI-00076 Aalto, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
3
|
Šolínová V, Tůma P, Butnariu M, Kašička V, Koval D. Covalent anionic copolymer coatings with tunable electroosmotic flow for optimization of capillary electrophoretic separations. Electrophoresis 2022; 43:1953-1962. [DOI: 10.1002/elps.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Veronika Šolínová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czech Republic
| | - Petr Tůma
- Department of Hygiene, Third Faculty of Medicine Charles University Prague 10 Czech Republic
| | - Maria Butnariu
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czech Republic
- Department of Analytical Chemistry, Faculty of Science Charles University Prague 2 Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czech Republic
| | - Dušan Koval
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czech Republic
| |
Collapse
|
4
|
Roca S, Dhellemmes L, Leclercq L, Cottet H. Polyelectrolyte Multilayers in Capillary Electrophoresis. Chempluschem 2022; 87:e202200028. [PMID: 35388990 DOI: 10.1002/cplu.202200028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Indexed: 02/21/2024]
Abstract
Capillary electrophoresis (CE) has been proven to be a performant analytical method to analyze both small and macro molecules. Indeed, it is capable of separating compounds of the same nature according to differences in their charge to size ratios, particularly proteins, monoclonal antibodies and peptides. However, one of the major obstacles to reach high separation efficiency remains the adsorption of solutes on the capillary wall. Among the different coating approaches used to control and minimize solute adsorption, polyelectrolyte multilayers can be applied to CE as a versatile approach. These coatings are made up of alternating layers of polycations and polyanions, and may be used in acidic, neutral or basic conditions depending on the solutes to be analyzed. This Review provides an overview of Successive Multiple Ionic-polymer Layer (SMIL) coatings used in CE, looking at how different parameters induce variations on the electro-osmotic flow (EOF), separation efficiency and coating stability, as well as their promising applications in the biopharmaceutical field.
Collapse
Affiliation(s)
- Sébastien Roca
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
5
|
Covalent cationic copolymer coatings allowing tunable electroosmotic flow for optimization of capillary electrophoretic separations. Anal Chim Acta 2021; 1178:338789. [PMID: 34482877 DOI: 10.1016/j.aca.2021.338789] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 11/22/2022]
Abstract
Electroosmotic flow (EOF) plays a pivotal role in optimization of capillary electrophoresis (CE) separations of (bio)molecules and (bio)particles. EOF velocity is directly related to analysis time, peak resolution and separation efficiency. Here, we report a concept of charged polymer coatings of the inner fused silica capillary wall, which allows anodic EOF with mobility ranging from 0 to ∼(30-40) × 10-9 m2V-1s-1. The capillary wall is modified by covalently bound cationic copolymer poly(acrylamide-co-(3-acrylamidopropyl)trimethylammonium chloride) (PAMAPTAC) containing variable ratio of the charged monomer in the 0-60 mol. % interval. The EOF mobility showed minor variability with composition of background electrolyte (BGE) and pH in the 2-10 interval. The coatings were evaluated by CE-UV and nanospray CE-MS in the counter-EOF arrangement for a series of basic drug molecules in acetic acid based acidic BGE. Tunable EOF velocity was demonstrated as a useful tool for optimization of peak resolution, separation efficiency and migration time of analytes. Electrostatic repulsion of positively charged capillary surface was shown as beneficial for suppression of analyte adsorption, notably for hydrophobic cationic analytes.
Collapse
|
6
|
Separation of anaesthetic ketamine and its derivates in PAMAPTAC coated capillaries with tuneable counter-current electroosmotic flow. Talanta 2020; 217:121094. [PMID: 32498904 DOI: 10.1016/j.talanta.2020.121094] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Capillary electrophoretic separation of ketamine, norketamine, hydroxynorketamine, and dehydronorketamine was performed in the counter-current regime under the influence of oppositely-directed electroosmotic flow. For this purpose, the fused silica capillaries were covalently coated with the poly(acrylamide-co-3-acrylamidopropyl trimethylammonium chloride) copolymer (PAMAPTAC). The content of the cationic monomer APTAC in the polymerization mixture varied in the range 0-6 mol. % and the generated electroosmotic flow increased continuously in the 0-20 · 10-9 m2V-1s-1 interval. Importantly, it resulted in improved electrophoretic resolution of ketamine/norketamine, which increased from 0.8 for neutral PAM coating (i.e. 0% PAMAPTAC) to 3.0 for 6% PAMAPTAC. The determination of ketamine and its derivates in rat serum was performed in a 4% PAMAPTAC capillary with an inner diameter of 25 μm. The separation was performed in a 500 mM aqueous solution of acetic acid (pH 2.3). The clinical sample was deproteinized by the addition of acetonitrile to the serum and a large volume of the treated sample was injected directly into the capillary. The achieved limit of detection ranged from 2.2 ng/mL for dehydronorketamine to 4.1 ng/mL for hydroxynorketamine; the intra-day repeatability was 1.0-1.5% for the migration time and 2.8-3.3% for the peak area. The developed methodology was employed for time monitoring of ketamines in rat serum after intra venous administration of low doses of anaesthetic at a level of 2 μg per g of body weight.
Collapse
|
7
|
Chu C, Wei M, Liu C, Li H, Cao J, Yan J. Over 1000-fold improvement in an online preconcentration of trace anionic compounds by capillary electrophoresis with ionic liquid micelle-based three-step stacking. Anal Chim Acta 2018; 1044:191-197. [DOI: 10.1016/j.aca.2018.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/05/2018] [Accepted: 08/13/2018] [Indexed: 01/03/2023]
|
8
|
Polydopamine-functionalized poly(ether ether ketone) tube for capillary electrophoresis-mass spectrometry. Anal Chim Acta 2017; 987:64-71. [DOI: 10.1016/j.aca.2017.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022]
|
9
|
Stock LG, Leitner M, Traxler L, Bonazza K, Leclercq L, Cottet H, Friedbacher G, Ebner A, Stutz H. Advanced portrayal of SMIL coating by allying CZE performance with in-capillary topographic and charge-related surface characterization. Anal Chim Acta 2017; 951:1-15. [DOI: 10.1016/j.aca.2016.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/22/2016] [Indexed: 10/20/2022]
|
10
|
Lounis FM, Chamieh J, Leclercq L, Gonzalez P, Cottet H. Modelling and predicting the interactions between oppositely and variously charged polyelectrolytes by frontal analysis continuous capillary electrophoresis. SOFT MATTER 2016; 12:9728-9737. [PMID: 27858039 DOI: 10.1039/c6sm01811d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, a systematic study of the interactions between poly(l-lysine) and variously charged statistical copolymers of acrylamide and 2-acrylamido-2-methyl-1-propanesulfonate (PAMAMPS) has been carried out by frontal analysis continuous capillary electrophoresis (FACCE). FACCE was successfully implemented to obtain the interaction parameters (binding constant and stoichiometry) at different ionic strengths and for different PAMAMPS charge densities varying between 15% and 100%. The range of investigated ionic strengths was carefully adjusted according to the PAMAMPS charge density to obtain measurable binding constants by FACCE (i.e. formation binding constant typically comprised between 104 and 106 M-1). The number of released counter-ions during the polyelectrolyte complex formation was systematically quantified via the ionic strength dependence of the binding constant and was compared to the total condensed counter-ion reservoir according to Manning theory on counter-ion condensation. A descriptive and predictive model relating the physico-chemical properties of the two partners, the binding constant and the ionic strength is proposed in the framework of multiple independent interaction sites of equal energy.
Collapse
Affiliation(s)
- Feriel Meriem Lounis
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Place Eugène Bataillon, CC 1706, 34095 Montpellier Cedex 5, France.
| | - Joseph Chamieh
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Place Eugène Bataillon, CC 1706, 34095 Montpellier Cedex 5, France.
| | - Laurent Leclercq
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Place Eugène Bataillon, CC 1706, 34095 Montpellier Cedex 5, France.
| | - Philippe Gonzalez
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Place Eugène Bataillon, CC 1706, 34095 Montpellier Cedex 5, France.
| | - Hervé Cottet
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Place Eugène Bataillon, CC 1706, 34095 Montpellier Cedex 5, France.
| |
Collapse
|
11
|
Benavidez TE, Garcia CD. Spectroscopic ellipsometry as a complementary tool to characterize coatings on PDMS for CE applications. Electrophoresis 2016; 37:2509-2516. [DOI: 10.1002/elps.201600143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 11/11/2022]
|
12
|
Barbati AC, Kirby BJ. Surface conductivity in electrokinetic systems with porous and charged interfaces: Analytical approximations and numerical results. Electrophoresis 2016; 37:1979-91. [PMID: 27168464 DOI: 10.1002/elps.201500505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 11/10/2022]
Abstract
We derive an approximate analytical representation of the conductivity for a 1D system with porous and charged layers grafted onto parallel plates. Our theory improves on prior work by developing approximate analytical expressions applicable over an arbitrary range of potentials, both large and small as compared to the thermal voltage (RTF). Further, we describe these results in a framework of simplifying nondimensional parameters, indicating the relative dominance of various physicochemical processes. We demonstrate the efficacy of our approximate expression with comparisons to numerical representations of the exact analytical conductivity. Finally, we utilize this conductivity expression, in concert with other components of the electrokinetic coupling matrix, to describe the streaming potential and electroviscous effect in systems with porous and charged layers.
Collapse
Affiliation(s)
- Alexander C Barbati
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Brian J Kirby
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Leitner M, Stock LG, Traxler L, Leclercq L, Bonazza K, Friedbacher G, Cottet H, Stutz H, Ebner A. Mapping molecular adhesion sites inside SMIL coated capillaries using atomic force microscopy recognition imaging. Anal Chim Acta 2016; 930:39-48. [PMID: 27265903 DOI: 10.1016/j.aca.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
Capillary zone electrophoresis (CZE) is a powerful analytical technique for fast and efficient separation of different analytes ranging from small inorganic ions to large proteins. However electrophoretic resolution significantly depends on the coating of the inner capillary surface. High technical efforts like Successive Multiple Ionic Polymer Layer (SMIL) generation have been taken to develop stable coatings with switchable surface charges fulfilling the requirements needed for optimal separation. Although the performance can be easily proven in normalized test runs, characterization of the coating itself remains challenging. Atomic force microscopy (AFM) allows for topographical investigation of biological and analytical relevant surfaces with nanometer resolution and yields information about the surface roughness and homogeneity. Upgrading the scanning tip to a molecular biosensor by adhesive molecules (like partly inverted charged molecules) allows for performing topography and recognition imaging (TREC). As a result, simultaneously acquired sample topography and adhesion maps can be recorded. We optimized this technique for electrophoresis capillaries and investigated the charge distribution of differently composed and treated SMIL coatings. By using the positively charged protein avidin as a single molecule sensor, we compared these SMIL coatings with respect to negative charges, resulting in adhesion maps with nanometer resolution. The capability of TREC as a functional investigation technique at the nanoscale was successfully demonstrated.
Collapse
Affiliation(s)
- Michael Leitner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Lorenz G Stock
- Division of Chemistry and Bioanalytics, Department of Molecular Biology, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Lukas Traxler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Laurent Leclercq
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier, France
| | - Klaus Bonazza
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Gernot Friedbacher
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Hervé Cottet
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier, France
| | - Hanno Stutz
- Division of Chemistry and Bioanalytics, Department of Molecular Biology, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Andreas Ebner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria.
| |
Collapse
|
14
|
Uematsu Y. Nonlinear electro-osmosis of dilute non-adsorbing polymer solutions with low ionic strength. SOFT MATTER 2015; 11:7402-7411. [PMID: 26274546 DOI: 10.1039/c5sm01507c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nonlinear electro-osmotic behaviour of dilute non-adsorbing polymer solutions with low salinity is investigated using Brownian dynamics simulations and a kinetic theory. In the Brownian simulations, the hydrodynamic interaction between the polymers and a no-slip wall is considered using the Rotne-Prager approximation of the Blake tensor. In a plug flow under a sufficiently strong applied electric field, the polymer migrates toward the bulk, forming a depletion layer thicker than the equilibrium one. Consequently, the electro-osmotic mobility increases nonlinearly with increasing electric field and becomes saturated. This nonlinear mobility does not depend qualitatively on the details of the rheological properties of the polymer solution. Analytical calculations using the kinetic theory for the same system quantitatively reproduce the results of the Brownian dynamics simulation well.
Collapse
Affiliation(s)
- Yuki Uematsu
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
15
|
A facile and versatile approach for controlling electroosmotic flow in capillary electrophoresis via mussel inspired polydopamine/polyethyleneimine co-deposition. J Chromatogr A 2015; 1416:94-102. [DOI: 10.1016/j.chroma.2015.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/20/2015] [Accepted: 09/03/2015] [Indexed: 01/06/2023]
|
16
|
Raafatnia S, Hickey OA, Holm C. Electrophoresis of a Spherical Polyelectrolyte-Grafted Colloid in Monovalent Salt Solutions: Comparison of Molecular Dynamics Simulations with Theory and Numerical Calculations. Macromolecules 2015. [DOI: 10.1021/ma502238z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shervin Raafatnia
- Institute
for Computational
Physics, Stuttgart University, Allmandring 3, D-70569, Stuttgart, Germany
| | - Owen A. Hickey
- Institute
for Computational
Physics, Stuttgart University, Allmandring 3, D-70569, Stuttgart, Germany
| | - Christian Holm
- Institute
for Computational
Physics, Stuttgart University, Allmandring 3, D-70569, Stuttgart, Germany
| |
Collapse
|
17
|
Raafatnia S, Hickey OA, Holm C. Mobility reversal of polyelectrolyte-grafted colloids in monovalent salt solutions. PHYSICAL REVIEW LETTERS 2014; 113:238301. [PMID: 25526166 DOI: 10.1103/physrevlett.113.238301] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 06/04/2023]
Abstract
We present molecular dynamics simulations on the electrophoresis of a negative colloid grafted with positive polyelectrolytes. Net-neutral colloids show a varying mobility in monovalent salt. For colloids with negative net charge the mobility is negative at low and positive at high salt concentrations. This mobility reversal is an electrokinetic effect, and thus different from that observed in multivalent salt. Our results agree with numerical calculations based on the Darcy-Brinkman formalism, with which we predict the mobility reversal to also occur for experimentally accessible colloids.
Collapse
Affiliation(s)
- Shervin Raafatnia
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| | - Owen A Hickey
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| | - Christian Holm
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| |
Collapse
|
18
|
Marini Bettolo Marconi U, Monteferrante M, Melchionna S. Electro-osmotic flow in coated nanocapillaries: a theoretical investigation. Phys Chem Chem Phys 2014; 16:25473-82. [DOI: 10.1039/c4cp03680h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Barbati AC, Kirby BJ. Electrokinetic measurements of thin Nafion films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1985-1993. [PMID: 24479374 DOI: 10.1021/la403735g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We perform an electrokinetic characterization of ~300 nm Nafion films deposited on glass slides over a relatively unexplored region of ionic strength and pH. Owing to the small pore size of the Nafion, we probe the Nafion-fluid interface with the streaming potential measurement, and we probe ionic transport through the entire thickness of the Nafion film with the conductivity measurements. By applying a transport model for each of these measurements, we show that the inferred fixed charge density and characteristic fluid resistance length is different in each case. Analyzing our results with data from the literature, we suggest that our result is consistent with a thin Nafion film that is both nonuniform and weakly hydrated. Our regimen of experimentation and analysis may be generalized to characterize other porous and charged layers.
Collapse
Affiliation(s)
- Alexander C Barbati
- Sibley School of Mechanical and Aerospace Engineering, Cornell University , Ithaca, New York 14853, United States
| | | |
Collapse
|
20
|
Berli CLA. The apparent hydrodynamic slip of polymer solutions and its implications in electrokinetics. Electrophoresis 2013; 34:622-30. [DOI: 10.1002/elps.201200476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 11/06/2022]
|
21
|
Nehmé R, Perrin C. Highly charged polyelectrolyte coatings to prevent adsorption during protein and peptide analysis in capillary electrophoresis. Methods Mol Biol 2013; 984:191-206. [PMID: 23386345 DOI: 10.1007/978-1-62703-296-4_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Capillary electrophoresis (CE) is an interesting technique for protein and peptide analysis. However, one of the major problems concerns sample adsorption on the internal capillary wall. The use of non-covalent coatings using highly charged polyelectrolytes is an efficient, simple, and fast approach to reduce peptide and protein adsorption phenomena. We have studied in a systematic manner the effect of coating conditions on the stability and efficiency of multilayer coatings using poly(diallyldimethylammonium) chloride (PDADMAC) as polycation and polystyrene sulfonate (PSS) as polyanion. When optimal conditions defined in the protocols are used, very stable coatings are obtained and adsorption phenomena are eliminated. The coatings are stable over a large range of pH buffer (2-10) and in the presence of organic solvent. Hundreds of analyses can be performed without coating regeneration. Coated capillaries can be easily stored and reused.
Collapse
Affiliation(s)
- Reine Nehmé
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans, France
| | | |
Collapse
|
22
|
Dynamically formed admicelle layer to control the amplitude of cathodic electroosmotic flow. J Chromatogr A 2012; 1256:271-5. [DOI: 10.1016/j.chroma.2012.07.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/22/2022]
|
23
|
Shendruk T, Hickey O, Slater G, Harden J. Electrophoresis: When hydrodynamics matter. Curr Opin Colloid Interface Sci 2012. [DOI: 10.1016/j.cocis.2011.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Hickey OA, Holm C, Harden JL, Slater GW. Influence of Charged Polymer Coatings on Electro-Osmotic Flow: Molecular Dynamics Simulations. Macromolecules 2011. [DOI: 10.1021/ma201995q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Owen A. Hickey
- Institute for Computational Physics, Universität Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Christian Holm
- Institute for Computational Physics, Universität Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
| | - James L. Harden
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Gary W. Slater
- Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
25
|
Nehmé R, Perrin C, Cottet H, Blanchin MD, Fabre H. Stability of capillaries coated with highly charged polyelectrolyte monolayers and multilayers under various analytical conditions—Application to protein analysis. J Chromatogr A 2011; 1218:3537-44. [DOI: 10.1016/j.chroma.2011.03.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 11/26/2022]
|
26
|
Haselberg R, Brinks V, Hawe A, de Jong GJ, Somsen GW. Capillary electrophoresis-mass spectrometry using noncovalently coated capillaries for the analysis of biopharmaceuticals. Anal Bioanal Chem 2011; 400:295-303. [PMID: 21318246 PMCID: PMC3062027 DOI: 10.1007/s00216-011-4738-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/24/2010] [Accepted: 01/27/2011] [Indexed: 10/29/2022]
Abstract
In this work, the usefulness of capillary electrophoresis-electrospray ionization time-of-flight-mass spectrometry for the analysis of biopharmaceuticals was studied. Noncovalently bound capillary coatings consisting of Polybrene-poly(vinyl sulfonic acid) or Polybrene-dextran sulfate-Polybrene were used to minimize protein and peptide adsorption, and achieve good separation efficiencies. The potential of the capillary electrophoresis-mass spectrometry (CE-MS) system to characterize degradation products was investigated by analyzing samples of the drugs, recombinant human growth hormone (rhGH) and oxytocin, which had been subjected to prolonged storage, heat exposure, and/or different pH values. Modifications could be assigned based on accurate masses as obtained with time-of-flight-mass spectrometry (TOF-MS) and migration times with respect to the parent compound. For heat-exposed rhGH, oxidations, sulfonate formation, and deamidations were observed. Oxytocin showed strong deamidation (up to 40%) upon heat exposure at low pH, whereas at medium and high pH, mainly dimer (>10%) and trisulfide formation (6-7%) occurred. Recombinant human interferon-β-1a (rhIFN-β) was used to evaluate the capability of the CE-MS method to assess glycan heterogeneity of pharmaceutical proteins. Analysis of this N-glycosylated protein revealed a cluster of resolved peaks which appeared to be caused by at least ten glycoforms differing merely in sialic acid and hexose N-acetylhexosamine composition. Based on the relative peak area (assuming an equimolar response per glycoform), a quantitative profile could be derived with the disialytated biantennary glycoform as most abundant (52%). Such a profile may be useful for in-process and quality control of rhIFN-β batches. It is concluded that the separation power provided by combined capillary electrophoresis and TOF-MS allows discrimination of highly related protein species.
Collapse
Affiliation(s)
- R Haselberg
- Department of Biomedical Analysis, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Zhou S, Tan J, Chen Q, Lin X, Lü H, Xie Z. Carboxymethylchitosan covalently modified capillary column for open tubular capillary electrochromatography of basic proteins and opium alkaloids. J Chromatogr A 2010; 1217:8346-51. [DOI: 10.1016/j.chroma.2010.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 10/26/2010] [Accepted: 11/02/2010] [Indexed: 11/26/2022]
|
28
|
Herrero M, Bernal J, Velasco D, Elvira C, Cifuentes A. Connections between structure and performance of four cationic copolymers used as physically adsorbed coatings in capillary electrophoresis. J Chromatogr A 2010; 1217:7586-92. [DOI: 10.1016/j.chroma.2010.09.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/10/2010] [Accepted: 09/24/2010] [Indexed: 11/16/2022]
|
29
|
Permanent gold nanoparticle coatings on polyelectrolyte multilayer modified capillaries for open-tubular capillary electrochromatography. J Chromatogr A 2010; 1217:6588-94. [DOI: 10.1016/j.chroma.2010.08.057] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/11/2010] [Accepted: 08/23/2010] [Indexed: 11/21/2022]
|
30
|
Li J, Han H, Wang Q, Liu X, Jiang S. Poly(N-vinylimidazole)-grafted capillary for electrophoresis prepared by surface-initiated atom transfer radical polymerization. J Sep Sci 2010; 33:2804-10. [DOI: 10.1002/jssc.201000211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Weinbauer M, Stutz H. Successive multiple ionic polymer layer coated capillaries in the separation of proteins - recombinant allergen variants as a case study. Electrophoresis 2010; 31:1805-12. [PMID: 20506417 DOI: 10.1002/elps.201000077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A successive multiple ionic polymer layer (SMIL) coating consisting of two pairs of poly(diallyldimethylammonium chloride) and dextran sulfate (DS) layers was applied for the separation of recombinant products of the major birch pollen allergen Betula verrucosa (Bet v 1a). The combination with volatile ammonium bicarbonate buffer at pH 6.70 offers the possibility for future MS hyphenation. The negative net charge of allergens required DS as terminal SMIL layer. The EOF was accelerated from 3.17x10(-8) m(2) V(-1) s(-1) in uncoated to 4.52x10(-8) m(2) V(-1) s(-1) in SMIL capillaries. Fresh prepared SMIL capillaries showed slight EOF acceleration due to gradual re-organization of SMIL structure until stabilization was achieved. Dry storage of SMIL capillaries prevented fluctuations in EOF and migration times and improved coating durability. However, the gradual reconstitution of entangled SMIL layers affected efficiency, but was cured by a 10 mmol/L NaOH rinsing step. Durability of SMIL capillaries in MS-applicable dimension was confirmed for > 70 runs and in total 42 h of voltage application with average intra-day precision of 0.22 and 0.79% and inter-day-precision of 0.91 and 1.17% for migration times of EOF and Bet v 1a, respectively. Final SMIL coating allowed for the separation of Bet v 1a, a hypoallergenic isoform and carbamylated variants with 150,000-685,000 plates.
Collapse
Affiliation(s)
- Martin Weinbauer
- Division of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
32
|
Nehmé R, Perrin C, Guerlavais V, Fehrentz JA, Cottet H, Martinez J, Fabre H. Use of coated capillaries for the electrophoretic separation of stereoisomers of a growth hormone secretagogue. Electrophoresis 2009; 30:3772-9. [DOI: 10.1002/elps.200900093] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Abstract
The EOF of polymer solutions is analysed in the framework of continuum fluid mechanics and the standard electrokinetic model. Two key aspects are taken into consideration: the non-Newtonian character of the fluid and the polymer concentration near the interface, which greatly modify the fluid viscosity in the region where electroosmosis takes place. A satisfactory mathematical model is derived for the electroosmotic mobility of solutions that present polymer depletion at the wall. The case of solutions containing polymers that adsorb onto the wall is briefly reviewed, and a preliminary approach is discussed for the limit of strong polymer adsorption. In order to illustrate the theoretical discussions, experimental data obtained from aqueous solutions of carboxymethyl cellulose in fused-silica capillaries are presented. Relevant results are observed, which are appropriately captured by the modelling proposed. The fundamental phenomena discussed in this work are of interest in microfluidics and electrophoresis.
Collapse
|
34
|
Nehmé R, Perrin C, Cottet H, Blanchin M, Fabre H. Influence of polyelectrolyte capillary coating conditions on protein analysis in CE. Electrophoresis 2009; 30:1888-98. [DOI: 10.1002/elps.200800688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Stutz H. Protein attachment onto silica surfaces - a survey of molecular fundamentals, resulting effects and novel preventive strategies in CE. Electrophoresis 2009; 30:2032-61. [DOI: 10.1002/elps.200900015] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Bernal J, Sánchez-Hernández L, Elvira C, Velasco D, Ibáñez E, Cifuentes A. Poly(N,N-dimethylacrylamide-co-4-(ethyl)-morpholine methacrylamide) copolymer as coating for CE. J Sep Sci 2009; 32:605-12. [PMID: 19160371 DOI: 10.1002/jssc.200800575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this work, a new physically adsorbed coating for CE is presented. This coating is based on a poly(N,N-dimethylacrylamide-co-4-(ethyl)-morpholine methacrylamide) (DMA/MAEM) copolymer synthesized in our laboratory. It is demonstrated that the direction and magnitude of the EOF in CE can be modulated by varying the composition of the DMA/MAEM copolymer and the type and pH of the BGE. Moreover, the DMA/MAEM coating provides %RSD(n) = 5 values for migration times lower than 0.9% for the same capillary and day, whereas the %RSD(n) = 25 obtained for the interday assay was lower than 2.9%. The stability of the coating procedure is also tested between capillaries obtaining %RSD(n) = 15 values lower than 2.9%, demonstrating that this physically adsorbed copolymer gives rise to a stable and reproducible coating in CE. Finally, the usefulness of this new cationic copolymer as CE coating is demonstrated through different applications. Namely, it is demonstrated that the CE separation of basic proteins, nucleotides and organic acids is achieved in a fast and easy way by using the DMA/MAEM coated capillary. The use of fused bare silica capillaries did not allow the separation of these compounds under the same analytical conditions. These results demonstrate that this type of coating in CE provides the option of using BGEs that are useless when utilized together with bare silica capillaries making wider the application and possibilities of this analytical technique.
Collapse
Affiliation(s)
- José Bernal
- Institute of Industrial Fermentations (CSIC), Juan de la Cierva 3, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Yin XB, Liu DY. Polydopamine-based permanent coating capillary electrochromatography for auxin determination. J Chromatogr A 2008; 1212:130-6. [DOI: 10.1016/j.chroma.2008.10.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/25/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
|
38
|
Danger G, Pascal R, Cottet H. Non-uniform surface charge distributions in CE: Theoretical and experimental approach based on Taylor dispersion. Electrophoresis 2008; 29:4226-37. [DOI: 10.1002/elps.200800128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Jung B, Caslavska J, Thormann W. Determination of ethyl sulfate in human serum and urine by capillary zone electrophoresis. J Chromatogr A 2008; 1206:26-32. [DOI: 10.1016/j.chroma.2008.05.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 11/13/2022]
|
40
|
Bernal J, Rodríguez-Meizoso I, Elvira C, Ibáñez E, Cifuentes A. Fast and easy coating for capillary electrophoresis based on a physically adsorbed cationic copolymer. J Chromatogr A 2008; 1204:104-9. [DOI: 10.1016/j.chroma.2008.07.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/07/2008] [Accepted: 07/22/2008] [Indexed: 11/27/2022]
|
41
|
Nehmé R, Perrin C, Cottet H, Blanchin MD, Fabre H. Influence of polyelectrolyte coating conditions on capillary coating stability and separation efficiency in capillary electrophoresis. Electrophoresis 2008; 29:3013-23. [DOI: 10.1002/elps.200700886] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|