1
|
Wang Y, Liu Y, Kuo Y, Guan S, Wang N, Lian Y, Huang J, Zhi X, Liu P, Li R, Yan L, Zhu X, Qiao J. Clinical practice and outcomes of preimplantation genetic testing for CMT1A using a novel direct detection method. Heliyon 2023; 9:e22196. [PMID: 38045147 PMCID: PMC10692806 DOI: 10.1016/j.heliyon.2023.e22196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Background Charcot-Marie-Tooth type 1A (CMT1A), the most frequent type of Charcot-Marie-Tooth disease, is mainly caused by a 1.4-Mb duplication containing the PMP22 gene. There is no effective treatment other than general supportive care and symptomatic treatment. Preimplantation genetic testing for monogenic defects (PGT-M) is an alternative approach for obtaining healthy babies. Methods A new technology and analysis method based on next-generation sequencing (NGS) was developed to detect duplication mutations directly. Simultaneously, aneuploidy and linkage analyses were performed to achieve a comprehensive and accurate embryo diagnosis. Results Eight couples were recruited in this study; PMP22 duplication was validated in seven couples, and PMP22 splicing mutation was found in one. Forty-five embryos from 12 PGT cycles were successfully detected using this novel method. The direct detection results for all embryos were consistent with the linkage analyses, suggesting a 100 % accuracy rate, and the aneuploidy rate of the biopsied blastocysts was 33.3 %. Eventually, 18 of the 45 diagnosed embryos were deemed suitable for transfer. Four healthy babies from three families were delivered and their genetic status confirmed by amniocentesis. Additionally, there were no adverse effects of anesthesia or increased pregnancy complications during PGT-M in female patients with CMT1A. Conclusions This study provided a simple, reliable, and efficient method that can directly detect PMP22 mutations based on NGS data and does not require positive family members. A clinical workflow for CMT1A interruption in the offspring before embryo implantation is also summarized.
Collapse
Affiliation(s)
- Yuqian Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Yujun Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ying Kuo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Shuo Guan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Nan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ying Lian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jin Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
2
|
Chen PS, Chao CC, Tsai LK, Huang HY, Chien YH, Huang PH, Hwu WL, Hsieh ST, Lee NC, Hsueh HW, Yang CC. Diagnostic Challenges of Neuromuscular Disorders after Whole Exome Sequencing. J Neuromuscul Dis 2023:JND230013. [PMID: 37066920 DOI: 10.3233/jnd-230013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Whole-exome sequencing (WES) facilitates the diagnosis of hereditary neuromuscular disorders. To achieve an accurate diagnosis, physicians should interpret the genetic report carefully along with clinical information and examinations. We described our experience with (1) clinical validation in patients with variants found using WES and (2) a diagnostic approach for those with negative findings from WES. METHODS WES was performed on patients with the clinical impression of hereditary neuromuscular disorders. Information on clinical manifestations, neurological examination, electrodiagnostic studies, histopathology of muscle and nerve, and laboratory tests were collected. RESULTS Forty-one patients (Male/Female: 18/23, age of onset: 34.5±15.9) accepted WES and were categorized into four scenarios: (1) patients with a positive WES result, (2) patients with an inconclusive WES result but supporting clinical data, (3) negative findings from WES, but a final diagnosis after further work-up, and (4) undetermined etiology from WES and in further work-ups. The yield rate of the initial WES was 63.4% (26/41). Among these, seventeen patients had positive WES result, while the other nine patients had inconclusive WES result but supporting clinical data. Notably, in the fifteen patients with equivocal or negative findings from WES, four patients (26.7%) achieved a diagnosis after further workup: tumor-induced osteomalacia, metabolic myopathy with pathogenic variants in mitochondrial DNA, microsatellite expansion disease, and vasculitis-related neuropathy. The etiologies remained undetermined in eleven patients (myopathy: 7, neuropathy: 4) after WES and further workup. CONCLUSIONS It is essential to design genotype-guided molecular studies to correlate the identified variants with their clinical features. For patients who had negative findings from WES, acquired diseases, mitochondrial DNA disorders and microsatellite expansion diseases should be considered.
Collapse
Affiliation(s)
- Pin-Shiuan Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Hsin Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsueh-Wen Hsueh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Chao Yang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Wang R, He J, Li JJ, Ni W, Wu ZY, Chen WJ, Wang Y. Clinical and genetic spectra in a series of Chinese patients with Charcot-Marie-Tooth disease. Clin Chim Acta 2015; 451:263-70. [PMID: 26454100 DOI: 10.1016/j.cca.2015.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/27/2022]
Abstract
The aim of this study was to determine the clinical features and frequencies of genetic subtypes in a series of patients with Charcot-Marie-Tooth (CMT) disease from Eastern China. Patients were divided into three subtypes, CMT1, CMT2 and hereditary neuropathy with liability to pressure palsy (HNPP), according to their electrophysiological manifestations. Multiplex ligation-dependent probe analysis (MLPA) was performed to detect duplications/deletions in the PMP22 gene. The coding regions and splice sites of the GJB1, MPZ, MFN2 and GDAP-1 genes were determined by direct sequencing. Among the 148 patients in the study, 37.2% of the cases had mutations in genes assessed. The mutation detection rate was higher in patients with family histories than in spontaneous cases. PMP22 duplication (13.5%) was predominant in this group of patients, followed by PMP22 deletion (11.5%), and point mutations in GJB1 (8.8%), MPZ (2.0%) and MFN2 (0.7%). Three novel mutations (c.151T>C and c.310 A>G in GJB1 and c.1516 C>G in MFN2) were detected. A small deletion in PMP22 exon 4 was detected in a patient with severe CMT1. Genetic tests have great value in CMT patients with family histories. The frequency of PMP22 duplications was lower in Asian patients than in others. We suggest that genetic testing strategies in CMT patients should be primarily based on electromyography data.
Collapse
Affiliation(s)
- Rui Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Jin He
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Jin-Jing Li
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wang Ni
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Ying Wu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Yi Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Karadima G, Koutsis G, Raftopoulou M, Karletidi KM, Zambelis T, Karandreas N, Panas M. Mutational analysis of Greek patients with suspected hereditary neuropathy with liability to pressure palsies (HNPP): a 15-year experience. J Peripher Nerv Syst 2015; 20:79-85. [PMID: 26110377 DOI: 10.1111/jns.12125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/15/2015] [Accepted: 06/10/2015] [Indexed: 11/28/2022]
Abstract
There has been limited information from population studies regarding the overall frequency of the common 1.5-Mb 17p11.2 deletion and even scarcer data regarding the overall frequency of PMP22 micromutations in patients with a clinical suspicion of hereditary neuropathy with liability to pressure palsies (HNPP). We have analysed 100 consecutive Greek patients referred for HNPP genetic testing over a 15-year period to our Neurogenetics Unit in Athens, a reference centre for all regions of Greece. All patients were screened for the 1.5-Mb deletion and a selected subgroup of deletion-negative patients for PMP22 micromutations. Mutation-positive and mutation-negative patients were compared for various clinical parameters. In total, 54 mutation-positive patients were identified. In index cases, the deletion frequency was 47.8%, and the PMP22 micromutation frequency was 2.2%. Within mutation-positive patients, the common deletion represented 95.7% and PMP22 micromutations 4.3% of cases. Two previously reported PMP22 micromutations (c.364_365delCC and c.79-2A>G) were detected. HNPP index cases had a 2.8-1 male-to-female ratio, similar to mutation-negative patients. A typical phenotype (recurrent or isolated palsies) was present in 82.4% of symptomatic HNPP cases, significantly higher than mutation-negative patients. Sensitivity of proposed electrophysiological diagnostic criteria for HNPP was calculated at 95.7% and specificity at 80.5%. In conclusion, the common HNPP deletion accounts for ∼50% and PMP22 micromutations for ∼2% of cases in a large consecutive cohort of patients with suspected HNPP. The mutational and phenotypic spectrum of HNPP is similar in the Greek population compared with other populations. Proposed electrophysiological diagnostic criteria perform satisfactorily in everyday clinical practice.
Collapse
Affiliation(s)
- Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, University of Athens Medical School, Athens, Greece
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, University of Athens Medical School, Athens, Greece
| | - Maria Raftopoulou
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, University of Athens Medical School, Athens, Greece
| | - Karolina-Maria Karletidi
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, University of Athens Medical School, Athens, Greece
| | - Thomas Zambelis
- EMG Laboratory, 1st Department of Neurology, Eginition Hospital, University of Athens Medical School, Athens, Greece
| | - Nikolaos Karandreas
- EMG Laboratory, 1st Department of Neurology, Eginition Hospital, University of Athens Medical School, Athens, Greece
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
5
|
Zhan Y, Zi X, Hu Z, Peng Y, Wu L, Li X, Jiang M, Liu L, Xie Y, Xia K, Tang B, Zhang R. PMP22-Related neuropathies and other clinical manifestations in Chinese han patients with charcot-marie-tooth disease type 1. Muscle Nerve 2015; 52:69-75. [PMID: 25522693 DOI: 10.1002/mus.24550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Most cases of Charcot-Marie-Tooth (CMT) disease are caused by mutations in the peripheral myelin protein 22 gene (PMP22), including heterozygous duplications (CMT1A), deletions (HNPP), and point mutations (CMT1E). METHODS Single-nucleotide polymorphism (SNP) arrays were used to study PMP22 mutations based on the results of multiplex ligation-dependent probe amplification (MLPA) and polymerase chain reaction-restriction fragment length polymorphism methods in 77 Chinese Han families with CMT1. PMP22 sequencing was performed in MLPA-negative probands. Clinical characteristics were collected for all CMT1A/HNPP probands and their family members. RESULTS Twenty-one of 77 CMT1 probands (27.3%) carried duplication/deletion (dup/del) copynumber variants. No point mutations were detected. SNP array and MLPA seem to have similar sensitivity. Fifty-seven patients from 19 CMT1A families had the classical CMT phenotype, except for 1 with concomitant CIDP. Two HNPP probands presented with acute ulnar nerve palsy or recurrent sural nerve palsy, respectively. CONCLUSIONS The SNP array has wide coverage, high sensitivity, and high resolution and can be used as a screening tool to detect PMP22 dup/del as shown in this Chinese Han population.
Collapse
Affiliation(s)
- Yajing Zhan
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Xiaohong Zi
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Zhengmao Hu
- National Key Lab of Medical Genetics, Central South University, Changsha, People's Republic of China
| | - Ying Peng
- National Key Lab of Medical Genetics, Central South University, Changsha, People's Republic of China
| | - Lingqian Wu
- National Key Lab of Medical Genetics, Central South University, Changsha, People's Republic of China
| | - Xiaobo Li
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Mingming Jiang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Lei Liu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Yongzhi Xie
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Kun Xia
- National Key Lab of Medical Genetics, Central South University, Changsha, People's Republic of China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ruxu Zhang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| |
Collapse
|
6
|
Karadima G, Koutsis G, Karletidi KM, Panas M. Reevaluation of the CMT1A duplication frequency in Greek Charcot-Marie-Tooth type 1 patients. Clin Genet 2014; 86:603. [PMID: 24635740 DOI: 10.1111/cge.12382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 11/26/2022]
Affiliation(s)
- G Karadima
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, University of Athens Medical School, Athens, Greece
| | | | | | | |
Collapse
|
7
|
Karadima G, Floroskufi P, Koutsis G, Vassilopoulos D, Panas M. Mutational analysis of PMP22, GJB1 and MPZ in Greek Charcot-Marie-Tooth type 1 neuropathy patients. Clin Genet 2011; 80:497-9. [PMID: 22243284 DOI: 10.1111/j.1399-0004.2011.01657.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
De Toffol S, Bellone E, Dulcetti F, Ruggeri AM, Maggio PP, Pulimeno MR, Mandich P, Maggi F, Simoni G, Grati FR. Quantitative fluorescence-polymerase chain reaction assay for the detection of the duplication of the Charcot Marie Tooth disease type 1A critical region. Genet Test Mol Biomarkers 2010; 14:225-31. [PMID: 20187762 DOI: 10.1089/gtmb.2009.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Charcot Marie Tooth (CMT) syndrome is the most common hereditary peripheral neuropathy, with an incidence of about 1 in 2500. The subtype 1A (CMT1A) is caused by a tandem duplication of a 1.5-Mb region encompassing the PMP22 gene. Conventional short tandem repeat (STR) analysis can reveal this imbalance if a triallelic pattern, defining with certainty the presence of duplication, is present. In case of duplication with a biallelic pattern, it can only indicate a semiquantitative dosage of the fluorescence intensity ratio of the two fragments. In this study we developed a quantitative fluorescence-PCR using seven highly informative STRs within the CMT1A critical region that successfully disclosed or excluded the presence of the pathogenic imbalance in a cohort of 60 samples including 40 DNAs from samples with the CMT1A duplication previously characterized with two different molecular approaches, and 20 diagnostic samples from 10 members of a five-generation pedigree segregating CMT1A, 8 unrelated cases and 2 prenatal samples. The application of the quantitative fluorescence-PCR using STRs located in the critical region could be a reliable method to evaluate the presence of the PMP22 duplication for the diagnosis and classification of hereditary neuropathies in asymptomatic subjects with a family history of inherited neuropathy, in prenatal samples in cases with one affected parent, and in unrelated patients with a sporadic demyelinating neuropathy with clinical features resembling CMT (i.e., pes cavus with hammer toes) or with conduction velocities in the range of CMT1A.
Collapse
Affiliation(s)
- Simona De Toffol
- Unit of Research and Development, Cytogenetics, and Molecular Biology, TOMA Advanced Biomedical Assays SpA, Busto Arsizio, Varese, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gaedigk A, Gaedigk R, Leeder JS. UGT2B17 and SULT1A1 gene copy number variation (CNV) detection by LabChip microfluidic technology. Clin Chem Lab Med 2010; 48:627-33. [PMID: 20192879 DOI: 10.1515/cclm.2010.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Gene copy number variations (CNVs) are increasingly recognized to play important roles in the expression of genes and hence on their respective enzymatic activities. This has been demonstrated for a number of drug metabolizing genes, such as UDP-glucuronosyltransferases 2B17 (UGT2B17) and sulfotransferase 1A1 (SULT1A1), which are subject to genetic heterogeneity, including CNV. Quantitative assays to assess gene copy number are therefore becoming an integral part of accurate genotype assessment and phenotype prediction. METHODS In this study, we evaluated a microfluidics-based system, the Bio-Rad Experion system, to determine the power and utility of this platform to detect UGT2B17 and SULT1A1 CNV in DNA samples derived from blood and tissue. UGT2B17 is known to present with 0, 1 or 2 and SULT1A1 with up to 5 gene copies. RESULTS Distinct clustering (p<0.001) into copy number groups was achieved for both genes. DNA samples derived from blood exhibited less inter-run variability compared to DNA samples obtained from liver tissue. This variability may be caused by tissue-specific PCR inhibitors as it could be overcome by using DNA from another tissue, or after the DNA had undergone whole genome amplification. CONCLUSIONS This method produced results comparable to those reported for other quantitative test platforms.
Collapse
Affiliation(s)
- Andrea Gaedigk
- Section of Developmental Pharmacology and Experimental Therapeutics, The Children's Mercy Hospital and Clinics, Kansas City, MO 64108 , USA.
| | | | | |
Collapse
|
10
|
Serratrice G, Azulay JP, Pellissier JF. Neuropatie ereditarie sensibili alla pressione (neuropatia tomaculare o allantoidea). Neurologia 2010. [DOI: 10.1016/s1634-7072(10)70502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Hung CC, Lin SY, Lee CN, Cheng HY, Lin SP, Chen MR, Chen CP, Chang CH, Lin CY, Yu CC, Chiu HH, Cheng WF, Ho HN, Niu DM, Su YN. Mutation spectrum of the fibrillin-1 (FBN1) gene in Taiwanese patients with Marfan syndrome. Ann Hum Genet 2009; 73:559-67. [PMID: 19839986 DOI: 10.1111/j.1469-1809.2009.00545.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to establish a national database of mutations in the fibrillin-1 (FBN1) gene that cause Marfan syndrome (MFS) in the Taiwanese population. In this study, we screened 294 patients from 157 families for the presence of FBN1 mutations using polymerase chain reaction/ denaturing high performance liquid chromatography (PCR/DHPLC). We identified 56 mutations in 62 of the 157 (40%) families including 49 single-base substitutions (36 missense mutations, seven nonsense mutations, and six splicing sites), one small insertion, four small deletions, one small indel (insertion and deletion), and one exonic deletion (Exon 36). When family history was taken into consideration, the mutation detection rate rose to 91% (29 of 32). We further investigated the phenotypic data and found that one third (47 of 157) of the families fit the Ghent criteria for MFS. Based on that data, the mutation rate was 98% (46/47). That finding implies that family history and the Ghent criteria play a more important role than clinical manifestations in establishing a clinical diagnosis of Marfan syndrome. Among the 56 mutations found in this study, 40 (71%) have not been registered in the Human Gene Mutation Database (HGMD) or in the Universal Mutation Database (UMD). This is the first study of the mutation spectrum of MFS in a cohort of patients in Taiwan. The database is expected to considerably improve genetic counseling for and medical care of MFS families.
Collapse
Affiliation(s)
- Chia-Cheng Hung
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yang C, Shen L, Xu Z, Wu X, Mo X, Zhang J, Wang D, Wang Y, Peng Y, Cao L, Jiang Y, Gu H, Chen S, Bian X, Liu J, Qiao D, Yi L. A novel competitive fluorescent multiplex STR polymorphism assay for rapid, reliable and single-tube screening of 22q11.2 copy-number aberrations. Electrophoresis 2009; 30:465-71. [PMID: 19145597 DOI: 10.1002/elps.200800321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Copy-number aberrations of the 22q11.2 region can lead to varied resulting and complex phenotypes. Routine screening for these common constitutional chromosomal abnormalities requires powerful tools. A competitive fluorescent multiplex STR polymorphism assay (CFMSA) was built for detecting these aberrations. With the introduction of an internal reference and distinguishable STR polymorphism markers, this competitive fluorescent multiplex STR polymorphism assay provides complementary information about polymorphism and gene dosage in one tube simultaneously, thereby enhancing the assay sensitivity. It was first tested in 110 normal controls, and was proven to have highly polymorphic and reliable gene dosage information. Then, 476 subjects with congenital heart defect were screened according to the testing strategy of the American Heart Association, and 17 deletions and 1 duplication of 22q11.2 were correctly identified. It is expected that this assay will serve as a cost-effective alternative to existing assays for routine, large-scale screening in all at-risk individuals with either deletion or duplication in 22q11.2.
Collapse
Affiliation(s)
- Chi Yang
- Department of Pathology, Nanjing University Medical School, Nanjing, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|