1
|
Multiplex quantitative analysis of microRNA expression via exponential isothermal amplification and conformation-sensitive DNA separation. Sci Rep 2017; 7:11396. [PMID: 28900270 PMCID: PMC5595994 DOI: 10.1038/s41598-017-11895-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/01/2017] [Indexed: 12/02/2022] Open
Abstract
Expression profiling of multiple microRNAs (miRNAs) generally provides valuable information for understanding various biological processes. Thus, it is necessary to develop a sensitive and accurate miRNA assay suitable for multiplexing. Isothermal exponential amplification reaction (EXPAR) has received significant interest as an miRNA analysis method because of high amplification efficiency. However, EXPAR cannot be used for a broader range of applications owing to limitations such as complexity of probe design and lack of proper detection method for multiplex analysis. Here, we developed a sensitive and accurate multiplex miRNA profiling method using modified isothermal EXPAR combined with high-resolution capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP). To increase target miRNA specificity, a stem-loop probe was introduced instead of a linear probe in isothermal EXPAR to allow specific amplification of multiple miRNAs with minimal background signals. CE-SSCP, a conformation-dependent separation method, was used for detection. Since CE-SSCP eliminates the need for probes to have different lengths, easier designing of probes with uniform amplification efficiency was possible. Eight small RNAs comprising six miRNAs involved in Caenorhabditis elegans development and two controls were analyzed. The expression patterns obtained using our method were concordant with those reported in previous studies, thereby supporting the proposed method’s robustness and utility.
Collapse
|
2
|
Lian DS, Zhao SJ. Capillary electrophoresis based on nucleic acid detection for diagnosing human infectious disease. Clin Chem Lab Med 2017; 54:707-38. [PMID: 26352354 DOI: 10.1515/cclm-2015-0096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/17/2015] [Indexed: 01/22/2023]
Abstract
Rapid transmission, high morbidity, and mortality are the features of human infectious diseases caused by microorganisms, such as bacteria, fungi, and viruses. These diseases may lead within a short period of time to great personal and property losses, especially in regions where sanitation is poor. Thus, rapid diagnoses are vital for the prevention and therapeutic intervention of human infectious diseases. Several conventional methods are often used to diagnose infectious diseases, e.g. methods based on cultures or morphology, or biochemical tests based on metabonomics. Although traditional methods are considered gold standards and are used most frequently, they are laborious, time consuming, and tedious and cannot meet the demand for rapid diagnoses. Disease diagnosis using capillary electrophoresis methods has the advantages of high efficiency, high throughput, and high speed, and coupled with the different nucleic acid detection strategies overcomes the drawbacks of traditional identification methods, precluding many types of false positive and negative results. Therefore, this review focuses on the application of capillary electrophoresis based on nucleic detection to the diagnosis of human infectious diseases, and offers an introduction to the limitations, advantages, and future developments of this approach.
Collapse
|
3
|
Liu F, Liu H, Liao Y, Wei J, Zhou X, Xing D. Multiplex detection and genotyping of pathogenic bacteria on paper-based biosensor with a novel universal primer mediated asymmetric PCR. Biosens Bioelectron 2015; 74:778-85. [PMID: 26226347 DOI: 10.1016/j.bios.2015.06.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 01/06/2023]
Abstract
Traditionary multiplex asymmetric polymerase chain reaction (PCR) can be applied to detect multiplex target organisms simultaneously, but complex optimizations of primer concentrations and staggered additions of primers are required to achieve equal amplification of multiplex genes. To overcome this shortcoming, we propose a novel method based on multiplex asymmetric PCR and paper-based nucleic acid diagnostics (PBNAD). In the asymmetric PCR, a universal primer was introduced to break the bottlenecks of low sensitivity and self-inhibition among different sets of primers. Amplification using the novel multiplex asymmetric PCR boosted the quantity of single-stranded amplicons, and the amplified products contained the same sequence at the 5' end. Therefore, only one gold nanoparticle-based signal probe was needed for the simultaneous detection of three genes using the PBNAD platform, and the detection signals could be observed with the naked eye. With this highly efficient, novel multiplex asymmetric PCR, as little as 1 pg/μL genomic DNA can be detected. This method can also be applied to genotyping for reliable epidemiological investigations. This proof-of-concept study highlights the potential of the PBNAD platform for cost- and labor-effective applications in the detection of pathogenic bacteria.
Collapse
Affiliation(s)
- Fang Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Hongxing Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yuhui Liao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jitao Wei
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
4
|
Durney BC, Crihfield CL, Holland LA. Capillary electrophoresis applied to DNA: determining and harnessing sequence and structure to advance bioanalyses (2009-2014). Anal Bioanal Chem 2015; 407:6923-38. [PMID: 25935677 PMCID: PMC4551542 DOI: 10.1007/s00216-015-8703-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/17/2022]
Abstract
This review of capillary electrophoresis methods for DNA analyses covers critical advances from 2009 to 2014, referencing 184 citations. Separation mechanisms based on free-zone capillary electrophoresis, Ogston sieving, and reptation are described. Two prevalent gel matrices for gel-facilitated sieving, which are linear polyacrylamide and polydimethylacrylamide, are compared in terms of performance, cost, viscosity, and passivation of electroosmotic flow. The role of capillary electrophoresis in the discovery, design, and characterization of DNA aptamers for molecular recognition is discussed. Expanding and emerging techniques in the field are also highlighted.
Collapse
Affiliation(s)
- Brandon C Durney
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | | |
Collapse
|
5
|
Hwang HS, Shin GW, Cohen A, Ryu CY, Jung GY. Sieving properties of end group-halogenated Pluronic polymer matrix in DNA separation under nondenaturing CE analysis. Electrophoresis 2014; 35:2946-50. [PMID: 25044023 DOI: 10.1002/elps.201400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 11/10/2022]
Abstract
CE-SSCP analysis is a well-established DNA separation method that is based on variations in mobility caused by sequence-induced differences in the conformation of single-stranded DNA. The resolution of CE-SSCP analysis was improved by using a Pluronic polymer matrix, and it has been successfully applied in various genetic analyses. Because the Pluronic polymer forms a micellar cubic structure in the capillary, it provides a stable internal structure for high-resolution CE-SSCP analysis. We hypothesized that formation of micellar cubic structure is influenced by the end hydroxyl group of the Pluronic polymer, which affords structural stability through hydrogen bonding. To test this hypothesis, the hydroxyl group was halogenated to eliminate the hydrogen bonding without disturbing the polarity of polymer matrix. CE-SSCP resolution of two DNA fragments with a single base difference was significantly worse in the halogenated polymer matrices due to band broadening. The viscoelastic properties of control (which has hydroxyl group), chlorinated, and brominated F108 solution upon heating were also investigated by rheological experiments, and we found that gelation was significantly associated with resolution. In this series of experiments, the effect of the hydroxyl group in Pluronic polymer matrix on separation resolution of CE-SSCP analysis was demonstrated.
Collapse
Affiliation(s)
- Hee Sung Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | | | | | | | | |
Collapse
|
6
|
Capillary electrophoresis for analysis of deletion and duplication in exon 44-55 of Duchenne muscular dystrophy gene. Electrophoresis 2013; 34:2503-10. [DOI: 10.1002/elps.201300207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 01/30/2023]
|
7
|
A low-density DNA microchip for the detection of (anti-)estrogenic compounds and their relative potencies. Anal Biochem 2013; 435:83-92. [DOI: 10.1016/j.ab.2012.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 01/07/2023]
|
8
|
Hwang HS, Shin GW, Chung B, Na J, Jung GY. Multiplex and quantitative pathogen detection with high-resolution capillary electrophoresis-based single-strand conformation polymorphism. Methods Mol Biol 2013; 919:155-163. [PMID: 22976099 DOI: 10.1007/978-1-62703-029-8_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Among the molecular diagnostic methods for bacteria-induced diseases, capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP) combined with 16S rRNA gene-specific PCR has enormous potential because it can separate sequence variants using a simple procedure. However, conventional CE-SSCP systems have limited resolution and cannot separate most 16S rRNA gene-specific markers into separate peaks. A high-resolution CE-SSCP system that uses a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer matrix was recently developed and shown to effectively separate highly similar PCR products. In this report, a protocol for the detection of 12 pathogenic bacteria is provided. Pathogen markers were amplified by PCR using universal primers and separated by CE-SSCP; each marker peak was well separated at baseline and showed a characteristic mobility, allowing the easy identification of the pathogens.
Collapse
Affiliation(s)
- Hee Sung Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | | | |
Collapse
|
9
|
Na J, Shin GW, Jung GY, Jung GY. A robust and simple-to-design multiplex DNA methylation assay based on MS-MLPA-CE-SSCP. Analyst 2013; 138:6969-76. [DOI: 10.1039/c3an01178j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Chung B, Shin GW, Choi W, Hwang HS, Oh MH, Jung GY. An accurate multiplex antibiotic susceptibility test using a high-resolution CE-SSCP-based stuffer-free multiplex ligation-dependent probe amplification system. Electrophoresis 2012; 34:284-8. [DOI: 10.1002/elps.201200372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/04/2012] [Accepted: 09/08/2012] [Indexed: 02/05/2023]
Affiliation(s)
- Boram Chung
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang; Gyeongbuk; Korea
| | - Gi Won Shin
- Institute of Environmental and Energy Technology; Pohang University of Science and Technology; Pohang; Gyeongbuk; Korea
| | - Woong Choi
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang; Gyeongbuk; Korea
| | - Hee Sung Hwang
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang; Gyeongbuk; Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science; Rural Development Administration; Suwon; Gyeonggi; Korea
| | | |
Collapse
|
11
|
Ramirez MS, Xie G, Marshall SH, Hujer KM, Chain PSG, Bonomo RA, Tolmasky ME. Multidrug-resistant (MDR) Klebsiella pneumoniae clinical isolates: a zone of high heterogeneity (HHZ) as a tool for epidemiological studies. Clin Microbiol Infect 2012; 18:E254-8. [PMID: 22551038 DOI: 10.1111/j.1469-0691.2012.03886.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Comparison of genome-wide, high-resolution restriction maps of Klebsiella pneumoniae clinical isolates, including an NDM-1 producer, and in silico-generated restriction maps of sequenced genomes revealed a highly heterogeneous region we designated the 'high heterogeneity zone' (HHZ). The HHZ consists of several regions, including a 'hot spot' prone to insertions and other rearrangements. The HHZ is a characteristic genomic area that can be used in the identification and tracking of outbreak-causing strains.
Collapse
Affiliation(s)
- M S Ramirez
- Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831-3599, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Szeliga J, Jackowski M, Kłodzińska E, Buszewski B, Kupczyk W. Clinical application of a rapid microbiological test based on capillary zone electrophoresis to assess local skin infection. BMC Res Notes 2011; 4:467. [PMID: 22035265 PMCID: PMC3219748 DOI: 10.1186/1756-0500-4-467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/30/2011] [Indexed: 11/26/2022] Open
Abstract
Background The basic clinical problem associated with infection treatment is the fact that classic, commonly and routinely used isolation and identification methods are based on long-term processes of a phenotypic analysis of microorganisms. Consequently sometimes, especially in small centres, rapid implementation of antibacterial treatment becomes delayed. The work presents the initial results of rapid microbiological identification based on an original method of capillary zone electrophoresis (CZE). The study involved the analysis of 78 biological samples from post-operative wounds and trophic ulcers. Results The attempt was made to identify individual bacterial species based on characteristic features of electropherograms achieved. Finally, G(+) cocci type bacteria and different G(-) rods were identified with sensitivity of 88.1% and specificity of 100%. Conclusions Based on the clinical trials using an electrophoretic technique in the field of microbiological diagnostics of infected exudate from a post-operative wound it can be concluded that it is a rapid and relatively sensitive method for initial identification of infectious pathogens.
Collapse
Affiliation(s)
- Jacek Szeliga
- Department of General, Gastroenterological and Oncological Surgery, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, ul, Sw, Jozefa 53/59 PL-87-100 Toruń, Poland.
| | | | | | | | | |
Collapse
|
13
|
Shin GW, Hwang HS, Oh MH, Doh J, Jung GY. Simultaneous quantitative detection of 12 pathogens using high-resolution CE-SSCP. Electrophoresis 2010; 31:2405-10. [PMID: 20568262 DOI: 10.1002/elps.201000091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several methods based on screening for a 16S ribosomal RNA gene marker have been developed for rapid and sensitive detection of pathogenic microorganisms. One such method, CE-based SSCP (CE-SSCP), has enormous potential because the technique can separate sequence variants using a simple procedure. However, conventional CE-SSCP systems have limited resolution and cannot separate most 16S ribosomal RNA gene-specific markers unless combined with additional modification steps. A high-resolution CE-SSCP system that uses a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer matrix was recently developed and shown to effectively separate highly similar PCR products. In this study, we developed a method based on a high-resolution CE-SSCP system using a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer that is capable of simultaneous and quantitative detection of 12 clinically important pathogens. Pathogen markers were amplified by PCR using universal primers and separated by CE-SSCP; each marker peak was well separated at baseline and showed a characteristic mobility, allowing easy identification of pathogens. A series of experiments using different amounts of genomic pathogen DNA showed that the method had a limit of detection of 0.31-1.56 pg and a dynamic range of approximately 10(2). These results indicate that high-resolution CE-SSCP systems have considerable potential in the clinical diagnosis of bacteria-induced diseases.
Collapse
Affiliation(s)
- Gi Won Shin
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | |
Collapse
|
14
|
Shin GW, Hwang HS, Seo SW, Oh MH, Ryu CY, Salvo CJ, Feldman S, Doh J, Jung GY. A novel pathogen detection system based on high-resolution CE-SSCP using a triblock copolymer matrix. J Sep Sci 2010; 33:1639-43. [PMID: 20405485 DOI: 10.1002/jssc.200900871] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although CE-SSCP analysis combined with 16S ribosomal RNA gene-specific PCR has enormous potential as a simple and versatile pathogen detection technique, low resolution of CE-SSCP causes the limited application. Among the experimental conditions affecting the resolution, the polymer matrix is considered to be most critical to improve the resolution of CE-SSCP analysis. However, due to the peak broadening caused by the interaction between hydrophobic moiety of polymer matrices and DNA, conventional polymer matrices are not ideal for CE-SSCP analysis. A poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) triblock copolymer, with dynamic coating ability and a propensity to form micelles to minimize exposure of hydrophobic PPO block to DNA, can be an alternative matrix. In this study, we examined the resolution of CE-SSCP analysis using the PEO-PPO-PEO triblock copolymer as the polymer matrix and four same-sized DNA fragments of similar sequence content. Among 48 commercially available PEO-PPO-PEO triblock copolymers, three were selected due to their transparency in the operable range of viscosity and PEO(137)PPO(43)PEO(137) exhibited the most effective separation. Significant improvement in resolution allowed discrimination of the similar sequences, thus greatly facilitated CE-SSCP analysis compared to the conventional polymer matrix. The results indicate that PEO-PPO-PEO triblock copolymer may serve as an ideal matrix for high-resolution CE-SSCP analysis.
Collapse
Affiliation(s)
- Gi Won Shin
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shin GW, Hwang HS, Chung B, Jung GY. Recent developments in CE-based detection methods for food-borne pathogens. Electrophoresis 2010; 31:2137-53. [DOI: 10.1002/elps.200900682] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Kim SJ, Shin GW, Choi SJ, Hwang HS, Jung GY, Seo TS. Triblock copolymer matrix-based capillary electrophoretic microdevice for high-resolution multiplex pathogen detection. Electrophoresis 2010; 31:1108-15. [PMID: 20309929 DOI: 10.1002/elps.200900651] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rapid and simple analysis for the multiple target pathogens is critical for patient management. CE-SSCP analysis on a microchip provides high speed, high sensitivity, and a portable genetic analysis platform in molecular diagnostic fields. The capability of separating ssDNA molecules in a capillary electrophoretic microchannel with high resolution is a critical issue to perform the precise interpretation in the electropherogram. In this study, we explored the potential of poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) triblock copolymer as a sieving matrix for CE-SSCP analysis on a microdevice. To demonstrate the superior resolving power of PEO-PPO-PEO copolymers, 255-bp PCR amplicons obtained from 16S ribosomal RNA genes of four bacterial species, namely Proteus mirabilis, Haemophilus ducreyi, Pseudomonas aeruginosa, and Neisseria meningitidis, were analyzed in the PEO-PPO-PEO matrix in comparison with 5% linear polyacrylamide and commercial GeneScan gel. Due to enhanced dynamic coating and sieving ability, PEO-PPO-PEO copolymer displayed fourfold enhancement of resolving power in the CE-SSCP to separate same-sized DNA molecules. Fivefold input of genomic DNA of P. aeruginosa and/or N. meningitidis produced proportionally increased corresponding amplicon peaks, enabling correct quantitative analysis in the pathogen detection. Besides the high-resolution sieving capability, a facile loading and replenishment of gel in the microchannel due to thermally reversible gelation property makes PEO-PPO-PEO triblock copolymer an excellent matrix in the CE-SSCP analysis on the microdevice.
Collapse
Affiliation(s)
- Se Jin Kim
- Department of Chemical and Biomolecular Engineering (BK21 program) and Institute for the BioCentury, KAIST, Gwahangno, Yuseong-Gu, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
17
|
Shin GW, Hwang HS, Nam HG, Oh MH, Jung GY. Sensitive multiplex RNA quantification using capillary electrophoresis-based single-strand conformation polymorphism. Biotechnol Bioeng 2010; 106:167-72. [PMID: 20014441 DOI: 10.1002/bit.22646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantification of RNA provides information crucial for various biological studies, including analysis of mRNA expression and that of microRNAs. Reverse transcription (RT) coupled with real-time polymerase chain reaction (PCR) is known to be the most accurate method for quantifying nucleic acids, and thus represents the state-of-the-art for RNA quantification. However, the use of real-time PCR for RNA quantification is limited to a single target per analytical run because of reductions in quantification power and limitations of fluorescence dyes associated with multiplex applications. Here, we report a novel multiplex RNA quantification method that uses capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) coupled with modified RT and asymmetric PCR. The reverse transcripts of seven in vitro transcribed RNAs were modified with common sequence tags and amplified by asymmetric PCR using primers specific to the common tags. The resulting amplicons were separated and quantified by CE-SSCP. A series of experiments using different amounts of RNA demonstrated that the assay had a limit of detection of 2 amol and a dynamic range of approximately 10(5). These results clearly indicate the potential of this method to provide robust and precise multiplex RNA quantification.
Collapse
Affiliation(s)
- Gi Won Shin
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | |
Collapse
|