1
|
Kośka I, Kubalczyk P, Cichomski M, Kisielewska A. The Use of Extraction on C18-Silica-Modified Magnetic Nanoparticles for the Determination of Ciprofloxacin and Ofloxacin in Meat Tissues. Molecules 2023; 28:6123. [PMID: 37630375 PMCID: PMC10459312 DOI: 10.3390/molecules28166123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
A simple, fast, and low-cost method of extraction using magnetic nanoparticles was developed for sample preparation in the determination of ciprofloxacin and ofloxacin in meat tissues with the use of capillary electrophoresis. This study is the first utilization of silica-coated magnetic nanoparticles with attached C18 chains to extract fluoroquinolones from meat tissues. This method is therefore characterized by a very simple sample preparation procedure, but on the other hand, by satisfactory precision and accuracy. Magnetic nanoparticles with an appropriately modified surface were placed in an Eppendorf tube, then conditioned with methanol, next rinsed with water and, finally, a homogenized tissue sample was added. At the neutral pH of the sample solution, these compounds do not have a charge and are able to adsorb on the modified particles. After extraction, the nanoparticles were dried and, then, desorption of analytes was conducted with the use of a mixture of 0.1 mol/L HCl and acetonitrile (1:1). This approach made it possible to purify the sample matrix and to obtain satisfactory LOQ levels for the method using the CE technique with UV-Vis detection. In this method, the LOD and LOQ values for both analytes were 0.04 nmol/g tissue and 0.15 nmol/g tissue, respectively. The calibration curves were linear in the entire concentration range, and the accuracy and the recovery of the method were at the satisfactory levels. The square value of the linear correlation coefficients (R2) for Cpx and Ofx were 0.9995 and 0.9992, respectively. The precision value of the method was within the range of 3-11% and accuracy was in the range of 93-110%.
Collapse
Affiliation(s)
- Izabella Kośka
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland
| | - Paweł Kubalczyk
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland
| | - Michał Cichomski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland; (M.C.); (A.K.)
| | - Aneta Kisielewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland; (M.C.); (A.K.)
| |
Collapse
|
2
|
A critical retrospective and prospective review of designs and materials in in-line solid-phase extraction capillary electrophoresis. Anal Chim Acta 2019; 1079:1-19. [PMID: 31387699 DOI: 10.1016/j.aca.2019.05.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 11/20/2022]
Abstract
Several strategies have been developed to decrease the concentration limits of detection (LODs) in capillary electrophoresis (CE). Nowadays, chromatographic-based preconcentration using a microcartridge integrated in the separation capillary for in-line solid-phase extraction capillary electrophoresis (SPE-CE) is one of the best alternatives for high throughput and reproducible sample clean-up and analyte preconcentration. This review covers different designs (geometrical configurations, with frits or fritless, capillary types, compatibility with commercial instrumentation, etc.) and materials (sorbents, supports, affinity ligands, etc.) applied for almost 30 years to prepare in-line SPE-CE microcartridges (i.e. analyte concentrators), with emphasis on the conventional unidirectional configuration in capillary format. Advantages, disadvantages and future perspectives are analyzed in detail to provide the reader a wide overview about the great potential of this technique to enhance sensitivity and address trace analysis.
Collapse
|
3
|
Baciu T, Borrull F, Aguilar C, Calull M. Sensitivity Enhancement in Capillary Electrophoresis Using Magnetic Particles as Solid-Phase Extraction Sorbents for the Determination of Drugs of Abuse in Urine. Methods Mol Biol 2018; 1810:89-96. [PMID: 29974420 DOI: 10.1007/978-1-4939-8579-1_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Over the last few years, different types of magnetic particles have been investigated and successfully used in sample preparation, of which iron oxides are the most popular, due to their low price and low toxicity. For analytical purposes, these particles have always been modified and functionalized with different materials to improve their stability and introduce new surface properties. Here we describe the preparation of silica-coated iron oxide particles functionalized with C18 and their application as solid-phase extraction sorbents coupled in-line with capillary electrophoresis for determining drugs of abuse in human urine.
Collapse
Affiliation(s)
- Tatiana Baciu
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Carme Aguilar
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain.
| | - Marta Calull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
4
|
Adam V, Vaculovicova M. Nanomaterials for sample pretreatment prior to capillary electrophoretic analysis. Analyst 2017; 142:849-857. [DOI: 10.1039/c6an02608g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nanomaterials are, in analytical science, used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection and identification of target molecules.
Collapse
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic
- Central European Institute of Technology
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic
- Central European Institute of Technology
| |
Collapse
|
5
|
Nekoeinia M, Dehkordi MK, Kolahdoozan M, Yousefinejad S. Preparation of epoxidized soybean oil-grafted Fe3O4–SiO2 as a water-dispersible hydrophobic nanocomposite for solid-phase extraction of rhodamine B. Microchem J 2016. [DOI: 10.1016/j.microc.2016.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Baciu T, Borrull F, Neusüß C, Aguilar C, Calull M. Capillary electrophoresis combined in-line with solid-phase extraction using magnetic particles as new adsorbents for the determination of drugs of abuse in human urine. Electrophoresis 2016; 37:1232-1244. [PMID: 26856766 DOI: 10.1002/elps.201500515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/06/2025]
Abstract
A simple approach is presented based on the in-line coupling between magnetic particles-based SPE and CE. Silica-coated iron oxide particles functionalized with C18 were successfully synthesized and used as a reverse-phase sorbent for in-line SPE-CE. Magnets were used to locally immobilize these sorbents inside the capillary. Four drugs of abuse were preconcentrated and determined in urine samples using the developed method with a simple pretreatment procedure based on LLE. Several parameters affecting the preconcentration were evaluated. The obtained results show that this strategy enhanced detection sensitivity in the range of 125-700-fold compared with CE without preconcentration. The developed method provides LODs (S/N = 3) for standard samples in the range of 0.5-20 ng/mL with satisfactory analytical precision, in both intraday and day-to-day experiments (RSDs <20%). The LODs (S/N = 3) reached for urine samples were in the range of 20-50 ng/mL. Relative recoveries greater than 75.9% were obtained. The established method has been applied to the analysis of drugs of abuse in urine samples from drug abusers.
Collapse
Affiliation(s)
- Tatiana Baciu
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | | | - Carme Aguilar
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Marta Calull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
7
|
Peró-Gascón R, Pont L, Benavente F, Barbosa J, Sanz-Nebot V. Analysis of serum transthyretin by on-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry using magnetic beads. Electrophoresis 2016; 37:1220-31. [DOI: 10.1002/elps.201500495] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Roger Peró-Gascón
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Laura Pont
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Fernando Benavente
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - José Barbosa
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Victoria Sanz-Nebot
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| |
Collapse
|
8
|
Food Microfluidics Biosensors. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Rajabi M, Sabzalian S, Barfi B, Arghavani-Beydokhti S, Asghari A. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices. J Chromatogr A 2015; 1425:42-50. [DOI: 10.1016/j.chroma.2015.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 11/25/2022]
|
10
|
Nordman N, Barrios-Lopez B, Laurén S, Suvanto P, Kotiaho T, Franssila S, Kostiainen R, Sikanen T. Shape-anchored porous polymer monoliths for integrated online solid-phase extraction-microchip electrophoresis-electrospray ionization mass spectrometry. Electrophoresis 2014; 36:428-32. [PMID: 25043750 DOI: 10.1002/elps.201400278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 12/22/2022]
Abstract
We report a simple protocol for fabrication of shape-anchored porous polymer monoliths (PPMs) for on-chip SPE prior to online microchip electrophoresis (ME) separation and on-chip (ESI/MS). The chip design comprises a standard ME separation channel with simple cross injector and a fully integrated ESI emitter featuring coaxial sheath liquid channel. The monolith zone was prepared in situ at the injection cross by laser-initiated photopolymerization through the microchip cover layer. The use of high-power laser allowed not only maskless patterning of a precisely defined monolith zone, but also faster exposure time (here, 7 min) compared with flood exposure UV lamps. The size of the monolith pattern was defined by the diameter of the laser output (∅500 μm) and the porosity was geared toward high through-flow to allow electrokinetic actuation and thus avoid coupling to external pumps. Placing the monolith at the injection cross enabled firm anchoring based on its cross-shape so that no surface premodification with anchoring linkers was needed. In addition, sample loading and subsequent injection (elution) to the separation channel could be performed similar to standard ME setup. As a result, 15- to 23-fold enrichment factors were obtained already at loading (preconcentration) times as short as 25 s without sacrificing the throughput of ME analysis. The performance of the SPE-ME-ESI/MS chip was repeatable within 3.1% and 11.5% RSD (n = 3) in terms of migration time and peak height, respectively, and linear correlation was observed between the loading time and peak area.
Collapse
Affiliation(s)
- Nina Nordman
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Park J, Kim S. On-Channel Micro-Solid Phase Extraction Bed Based on 1-Dodecanethiol Self-Assembly on Gold-Deposited Colloidal Silica Packing on a Capillary Electrochromatographic Microchip. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.1.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Li S, Cui H, Yuan Q, Wu J, Wadhwa A, Eda S, Jiang H. AC electrokinetics-enhanced capacitive immunosensor for point-of-care serodiagnosis of infectious diseases. Biosens Bioelectron 2014; 51:437-43. [DOI: 10.1016/j.bios.2013.08.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022]
|
13
|
Gasilova N, Qiao L, Momotenko D, Pourhaghighi MR, Girault HH. Microchip emitter for solid-phase extraction-gradient elution-mass spectrometry. Anal Chem 2013; 85:6254-63. [PMID: 23730778 DOI: 10.1021/ac400171e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A microchip electrospray emitter with a magnetic bead trap has been designed for solid-phase extraction-gradient elution-mass spectrometry (SPE-GEMS). The goal of this method is the detection of analytes at low concentrations and it is here demonstrated using reverse phase coated magnetic beads (Mbs) for the preconcentration and detection of the peptides. The sample is passed through the chip, and the peptides are retained and enriched in the trap. After washing, the peptides are released sequentially by stepwise gradient elution and electrosprayed for mass spectrometry analysis. This approach allows effective sample desalting, enrichment, sequential elution, and MS detection without the introduction of an additional separation step after SPE. Efficient preconcentration of model peptides by SPE and sequential release and analysis of peptides by GEMS were demonstrated for diluted sample solutions within the range of 1 μM to 10 nM. Fortified human blood serum, protein digest and fractions collected after protein digest OFFGEL separation were analyzed by SPE-GEMS allowing the detection of low abundance peptides usually not observed by direct mass spectrometry analysis. A mathematical model for gradient elution is proposed.
Collapse
Affiliation(s)
- Natalia Gasilova
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Breadmore MC, Shallan AI, Rabanes HR, Gstoettenmayr D, Abdul Keyon AS, Gaspar A, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2010-2012). Electrophoresis 2013; 34:29-54. [PMID: 23161056 DOI: 10.1002/elps.201200396] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 12/21/2022]
Abstract
CE has been alive for over two decades now, yet its sensitivity is still regarded as being inferior to that of more traditional methods of separation such as HPLC. As such, it is unsurprising that overcoming this issue still generates much scientific interest. This review continues to update this series of reviews, first published in Electrophoresis in 2007, with updates published in 2009 and 2011 and covers material published through to June 2012. It includes developments in the field of stacking, covering all methods from field amplified sample stacking and large volume sample stacking, through to isotachophoresis, dynamic pH junction and sweeping. Attention is also given to online or inline extraction methods that have been used for electrophoresis.
Collapse
Affiliation(s)
- Michael C Breadmore
- Australian Centre for Research on Separation Science, School of Chemistry, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Nge PN, Rogers CI, Woolley AT. Advances in microfluidic materials, functions, integration, and applications. Chem Rev 2013; 113:2550-83. [PMID: 23410114 PMCID: PMC3624029 DOI: 10.1021/cr300337x] [Citation(s) in RCA: 549] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pamela N. Nge
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Chad I. Rogers
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| |
Collapse
|
16
|
Morales-Cid G, Diez-Masa JC, de Frutos M. On-line immunoaffinity capillary electrophoresis based on magnetic beads for the determination of alpha-1 acid glycoprotein isoforms profile to facilitate its use as biomarker. Anal Chim Acta 2013; 773:89-96. [DOI: 10.1016/j.aca.2013.02.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/11/2013] [Accepted: 02/19/2013] [Indexed: 11/28/2022]
|
17
|
Zhang Z, Zhang F, Liu Y. Recent Advances in Enhancing the Sensitivity and Resolution of Capillary Electrophoresis. J Chromatogr Sci 2013; 51:666-83. [DOI: 10.1093/chromsci/bmt012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
18
|
Ríos Á, Ríos Á, Zougagh M, Zougagh M. Sample preparation for micro total analytical systems (μ-TASs). Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Maijó I, Borrull F, Aguilar C, Calull M. Different strategies for the preconcentration and separation of parabens by capillary electrophoresis. Electrophoresis 2013; 34:363-73. [DOI: 10.1002/elps.201200147] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Irene Maijó
- Department of Analytical Chemistry and Organic Chemistry; Faculty of Chemistry; Rovira i Virgili University; Tarragona; Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry; Faculty of Chemistry; Rovira i Virgili University; Tarragona; Spain
| | - Carme Aguilar
- Department of Analytical Chemistry and Organic Chemistry; Faculty of Chemistry; Rovira i Virgili University; Tarragona; Spain
| | - Marta Calull
- Department of Analytical Chemistry and Organic Chemistry; Faculty of Chemistry; Rovira i Virgili University; Tarragona; Spain
| |
Collapse
|
20
|
Nge PN, Pagaduan JV, Yu M, Woolley AT. Microfluidic chips with reversed-phase monoliths for solid phase extraction and on-chip labeling. J Chromatogr A 2012; 1261:129-35. [PMID: 22995197 PMCID: PMC3463737 DOI: 10.1016/j.chroma.2012.08.095] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 01/13/2023]
Abstract
The integration of sample preparation methods into microfluidic devices provides automation necessary for achieving complete micro total analysis systems. We have developed a technique that combines on-chip sample enrichment with fluorescence labeling and purification. Polymer monoliths made from butyl methacrylate were fabricated in cyclic olefin copolymer microdevices and used for solid phase extraction. We studied the retention of fluorophores, amino acids and proteins on these columns. The retained samples were subsequently labeled with both Alexa Fluor 488 and Chromeo P503, and unreacted dye was rinsed off the column before sample elution. Additional purification was obtained from the differential retention of proteins and fluorescent labels. A linear relation between the eluted peak areas and concentrations of on-chip labeled heat shock protein 90 samples demonstrated the utility of this method for on-chip quantitation. Our fast and simple method of simultaneously concentrating and labeling samples on-chip is compatible with miniaturization and desirable for automated analysis.
Collapse
Affiliation(s)
- Pamela N. Nge
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Jayson V. Pagaduan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Ming Yu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| |
Collapse
|
21
|
Wen Y, Li J, Ma J, Chen L. Recent advances in enrichment techniques for trace analysis in capillary electrophoresis. Electrophoresis 2012; 33:2933-52. [PMID: 23019127 DOI: 10.1002/elps.201200240] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/06/2012] [Accepted: 06/28/2012] [Indexed: 01/25/2023]
Abstract
CE is gaining great popularity as a well-established separation technique for many fields such as pharmaceutical research, clinical application, environmental monitoring, and food analysis, owing to its high resolving power, rapidity, and small amount of samples and reagents required. However, the sensitivity in CE analysis is still considered as being inferior to that in HPLC analysis. Diverse enrichment methods and techniques have been increasingly developed for overcoming this issue. In this review, we summarize the recent advances in enrichment techniques containing off-line preconcentration (sample preparation) and on-line concentration (sample stacking) to enhancing sensitivity in CE for trace analysis over the last 5 years. Some relatively new cleanup and preconcentration methods involving the use of dispersive liquid-liquid microextraction, supercritical fluid extraction, matrix solid-phase dispersion, etc., and the continued use and improvement of conventional SPE, have been comprehensively reviewed and proved effective preconcentration alternatives for liquid, semisolid, and solid samples. As for CE on-line stacking, we give an overview of field amplication, sweeping, pH regulation, and transient isotachophoresis, and the coupling of multiple modes. Moreover, some limitations and comparisons related to such methods/techniques are also discussed. Finally, the combined use of various enrichment techniques and some significant attempts are proposed to further promote analytical merits in CE.
Collapse
Affiliation(s)
- Yingying Wen
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research-YIC, Chinese Academy of Sciences-CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, P. R. China
| | | | | | | |
Collapse
|
22
|
Huang D, Fu C, Li Z, Deng C. Development of magnetic multiwalled carbon nanotubes as solid-phase extraction technique for the determination of p
-hydroxybenzoates in beverage. J Sep Sci 2012; 35:1667-74. [DOI: 10.1002/jssc.201200062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Chunhui Deng
- Department of Chemistry; Fudan University; Shanghai China
| |
Collapse
|
23
|
Review of recent developments of on-line sample stacking techniques and their application in capillary electrophoresis. OPEN CHEM 2012. [DOI: 10.2478/s11532-012-0007-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AbstractCapillary electrophoresis (CE) has become one of the most useful tools in separation science because of its high separation efficiency, low cost, versatility, ease of sample preparation and automation. However, some limitations of CE, such as poor concentration sensitivity due to its lower sample loading and shorter optical path length, limits its further applications in separation science. In order to solve this problem, various on-line sample preconcentration techniques such as transient isotachophoresis preconcentration, field-enhanced sample stacking, micelle to solvent stacking, micelle collapse, dynamic pH junction, sweeping, solid phase extraction, single drop microextraction and liquid phase microextraction have been combined with CE. Recent developments, applications and some variants together with different combinations of these techniques integrating in CE are reviewed here and our discussions will be confined to the past three years (2008–2011).
Collapse
|
24
|
Sueyoshi K. Recent Progress of On-line Combination of Preconcentration Device with Microchip Electrophoresis. CHROMATOGRAPHY 2012. [DOI: 10.15583/jpchrom.2012.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kenji Sueyoshi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
25
|
Jokerst JC, Emory JM, Henry CS. Advances in microfluidics for environmental analysis. Analyst 2012; 137:24-34. [DOI: 10.1039/c1an15368d] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Ramautar R, de Jong GJ, Somsen GW. Developments in coupled solid-phase extraction-capillary electrophoresis 2009-2011. Electrophoresis 2011; 33:243-50. [DOI: 10.1002/elps.201100453] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 02/06/2023]
|
27
|
Preparation and full characterization of a micro-immunoaffinity monolithic column and its in-line coupling with capillary zone electrophoresis with Ochratoxin A as model solute. J Chromatogr A 2011; 1232:93-100. [PMID: 22078231 DOI: 10.1016/j.chroma.2011.10.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/05/2011] [Accepted: 10/14/2011] [Indexed: 11/23/2022]
Abstract
A micro-immunoaffinity monolithic column (μIAC) was developed and in-line coupled with capillary zone electrophoresis in a fully automated way with Ochratoxin A as test solute. The in-line micro-immunoaffinity columns based on monolithic methacrylate polymers (EDMA-GMA) were prepared in situ at the inlet end of a PTFE coated fused silica capillary by UV initiated polymerization and subsequently grafted with antibodies. These μIACs were thoroughly characterized. The synthesis of the polymeric support was first demonstrated to be reproducible in terms of permeability, surface properties and efficiency. The antibodies immobilization was then studied by a new original hydrodynamic method (ADECA) allowing the in situ quantitative determination (at a miniaturized scale) of the total amount of immobilized antibodies. The combination of this measurement with the binding capacity of the μIAC allowed, for the first time, the in situ determination of immobilized antibody activity. A total of 260 ± 15 ng (1.6 ± 0.1 pmol) of IgG antibodies/cm in 75 μm i.d. monolithic column (i.e. 18 μgmg(-1)) was obtained with (anti-Ochratoxin A/Ochratoxin A) as antibody/antigen model. 40% of the immobilized antibodies remain active corresponding to a binding capacity of 1.2 ± 0.2 pmol antigen/cm (i.e. 600 pg/cm of our test solute OTA), a very high capacity when dealing with trace analysis and with regard to the detection limits (30 pg and 0.5 pg with UV and LIF detection, respectively). The recovery yields were quantitative with negligible non-specific adsorption and allow analysis of diluted samples (1 ngmL(-1)) for a percolated volume of 10 μL. It was also demonstrated that despite the progressive denaturation of antibodies consecutive to the elution step, the binding capacity of the μIAC remained high enough to implement at least 15 consecutive analyses with the same column and in a fully automated way.
Collapse
|
28
|
Bubble cell for magnetic bead trapping in capillary electrophoresis. Anal Bioanal Chem 2011; 401:3239-48. [DOI: 10.1007/s00216-011-5417-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 11/25/2022]
|
29
|
Gassner AL, Morandini J, Josserand J, Girault HH. Ring magnets for magnetic beads trapping in a capillary. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:614-621. [PMID: 32938081 DOI: 10.1039/c0ay00596g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper introduces the concept of ring magnets for magnetic beads (MBs) trapping in a capillary. Such magnets enable an easy insertion of a capillary simply like a pearl on a string. With this system, high magnetic forces are obtained thanks to the proximity between the magnet and the capillary, giving the opportunity to work at higher flow rates than with classical setups using two magnets with their magnetization perpendicular to the capillary. Moreover, by alternating magnets and non-magnetic spacers either in attraction or repulsion configuration, it is possible to form a chain and as a consequence to adapt the number of magnets to the desired number of plugs, thus controlling the surface available for molecule binding. Magnetic force mapping was first carried out by numerical simulations for a single ring magnet. The usefulness of this concept was then demonstrated with the achievement of an immunoassay and an online preconcentration experiment. To study the formation of multiplugs, the magnetic force was first simulated for a chain of four magnets in repulsion. This force was then introduced into a convection-diffusion model to understand the influence of the flow velocity on their size and position. The numerical simulations were qualitatively corroborated by microscopic visualizations, carried out in a capillary placed between rectangular magnets having a magnetization parallel to the capillary, and quantitatively by bead capture efficiency experiments.
Collapse
Affiliation(s)
- Anne-Laure Gassner
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire d'Electrochimie Physique et Analytique, EPFL SB ISIC LEPA, Station 6, CH-1015, Lausanne, Switzerland.
| | - Jacques Morandini
- Laboratoire LJK, groupe EDP, Université Joseph Fourier, 51 rue des Mathématiques, 38041, Grenoble, France
| | - Jacques Josserand
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire d'Electrochimie Physique et Analytique, EPFL SB ISIC LEPA, Station 6, CH-1015, Lausanne, Switzerland.
| | - Hubert H Girault
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire d'Electrochimie Physique et Analytique, EPFL SB ISIC LEPA, Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|