1
|
Kameyama A. Supported Molecular Matrix Electrophoresis. Methods Mol Biol 2024; 2763:79-97. [PMID: 38347402 DOI: 10.1007/978-1-0716-3670-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Distinct bands of mucins cannot be banded using a gel electrophoresis based on a molecular sieving effect due to their very large molecular weight and remarkable diversity in glycosylation. In contrast, membrane electrophoresis can separate mucins as round bands. Here, we present an analysis of mucin separation via membrane electrophoresis using a porous polyvinylidene difluoride membrane, which is highly stable against chemical modifications and various organic solvents. The separated mucins can not only be stained with dyes but also with antibodies and lectins, and glycans can be released from the excised bands and analyzed.
Collapse
Affiliation(s)
- Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| |
Collapse
|
2
|
Sugiura T, Hashimoto K, Kikuta K, Anazawa U, Nomura T, Kameyama A. Expression and localisation of MUC1 modified with sialylated core-2 O-glycans in mucoepidermoid carcinoma. Sci Rep 2023; 13:5752. [PMID: 37031283 PMCID: PMC10082819 DOI: 10.1038/s41598-023-32597-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Mucoepidermoid carcinoma (MEC) is the most frequent of the rare salivary gland malignancies. We previously reported high expression of Mucin 1 (MUC1) modified with sialylated core-2 O-glycans in MEC by using tissue homogenates. In this study, we characterised glycan structures of MEC and identified the localisation of cells expressing these distinctive glycans on MUC1. Mucins were extracted from the frozen tissues of three patients with MEC, and normal salivary glands (NSGs) extracted from seven patients, separated by supported molecular matrix electrophoresis (SMME) and the membranes stained with various lectins. In addition, formalin-fixed, paraffin-embedded sections from three patients with MEC were subjected to immunohistochemistry (IHC) with various monoclonal antibodies and analysed for C2GnT-1 expression by in situ hybridisation (ISH). Lectin blotting of the SMME membranes revealed that glycans on MUC1 from MEC samples contained α2,3-linked sialic acid. In IHC, MUC1 was diffusely detected at MEC-affected regions but was specifically detected at apical membranes in NSGs. ISH showed that C2GnT-1 was expressed at the MUC1-positive in MEC-affected regions but not in the NSG. MEC cells produced MUC1 modified with α2,3-linked sialic acid-containing core-2 O-glycans. MUC1 containing these glycans deserves further study as a new potential diagnostic marker of MEC.
Collapse
Affiliation(s)
- Takanori Sugiura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Kazuhiko Hashimoto
- Department of Pathology and Laboratory Medicine, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Kazutaka Kikuta
- Department of Musculoskeletal Oncology and Orthopaedic Surgery, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Ukei Anazawa
- Department of Orthopaedic Surgery, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
- Oral Cancer Center, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
3
|
Isaka E, Sugiura T, Hashimoto K, Kikuta K, Anazawa U, Nomura T, Kameyama A. Characterization of tumor-associated MUC1 and its glycans expressed in mucoepidermoid carcinoma. Oncol Lett 2021; 22:702. [PMID: 34457057 PMCID: PMC8358622 DOI: 10.3892/ol.2021.12963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Mucoepidermoid carcinoma (MEC) is one of the most frequently misdiagnosed tumors. Glycans are modulated by malignant transformation. Mucin 1 (MUC1) is a mucin whose expression is upregulated in various tumors, including MEC, and it has previously been investigated as a diagnostic and prognostic tumor marker. The present study aimed to reveal the differences in the mucin glycans between MEC and normal salivary glands (NSGs) to discover novel diagnostic markers. Soluble fractions of salivary gland homogenate prepared from three MEC salivary glands and 7 NSGs were evaluated. Mucins in MEC and NSGs were separated using supported molecular matrix electrophoresis, and stained with Alcian blue and monoclonal antibodies. The glycans of the separated mucins were analyzed by mass spectrometry. MUC1 was found in MEC but not in NSGs, and almost all glycans of MUC1 in MEC were sialylated, whereas the glycans of mucins in NSGs were less sialylated. The core 2 type glycans, (Hex)2(HexNAc)2(NeuAc)1 and (Hex)2(HexNAc)2(NeuAc)2, were found to be significantly abundant glycans of MUC1 in MEC. MEC markedly produced MUC1 modified with sialylated core 2 glycans. These data were obtained from the soluble fractions of salivary gland homogenates. These findings provide a basis for the utilization of MUC1 as a serum diagnostic marker for the preoperative diagnosis of MEC.
Collapse
Affiliation(s)
- Eisaku Isaka
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Takanori Sugiura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Kazuhiko Hashimoto
- Department of Pathology and Laboratory Medicine, Ichikawa General Hospital, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Kazutaka Kikuta
- Department of Musculoskeletal Oncology and Orthopaedic Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Ukei Anazawa
- Department of Orthopaedic Surgery, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan.,Oral Cancer Center, Tokyo Dental College, Ichikawa-shi, Chiba 272-8513, Japan
| | - Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
4
|
Bmi-1 regulates mucin levels and mucin O-glycosylation in the submandibular gland of mice. PLoS One 2021; 16:e0245607. [PMID: 33465144 PMCID: PMC7815129 DOI: 10.1371/journal.pone.0245607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Mucins, the major components of salivary mucus, are large glycoproteins abundantly modified with O-glycans. Mucins present on the surface of oral tissues contribute greatly to the maintenance of oral hygiene by selectively adhering to the surfaces of microbes via mucin O-glycans. However, due to the complex physicochemical properties of mucins, there have been relatively few detailed analyses of the mechanisms controlling the expression of mucin genes and the glycosyltransferase genes involved in glycosylation. Analysis performed using supported molecular matrix electrophoresis, a methodology developed for mucin analysis, and knockout mice without the polycomb group protein Bmi-1 revealed that Bmi-1 regulates mucin levels in the submandibular gland by suppressing the expression of the mucin Smgc gene, and that Bmi-1 also regulates mucin O-glycosylation via suppression of the glycosyltransferase Gcnt3 gene in the submandibular gland.
Collapse
|
5
|
Liu D, Liu G, Li Y, Wang Y, Zheng Y, Sha S, Li W, Kameyama A, Dong W. Rapid glycosylation analysis of mouse serum glycoproteins separated by supported molecular matrix electrophoresis. J Proteomics 2021; 234:104098. [PMID: 33421637 DOI: 10.1016/j.jprot.2020.104098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/06/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022]
Abstract
Previously, we developed a novel separation technique, namely, supported molecular matrix electrophoresis (SMME), which separates mucins on a PVDF membrane that impregnated with a hydrophilic polymer (such as polyvinyl alcohol), so it has the characteristics that are compatible with glycan analysis of the separated bands. Here, we describe the first instance of the application of SMME to mouse sera fractionation and demonstrate their differences from the pooled human sera fractionation by SMME. Furthermore, we have developed a fixation method for the lectin blotting of SMME-separated glycoproteins by immersing the SMME membranes into acetone solvent followed by heating. It showed that the amount of protein samples required for SMME were reduced more than 4-fold than that of the process of SDS-PAGE. We applied these techniques for the detection of glycosylation patterns of serum proteins from Fut8+/+ and Fut8-/- mice, further analyzed N-linked and O-linked glycans from the separated γ-bands by mass spectrometry, and demonstrated that there are α2,8-sialylated O-glycans contained in mouse sera glycoproteins. SMME can provide simple, rapid sera fractionation, glycan profiling differences between the bands of two samples and a new insight into the underlying mechanism that responsible for related diseases. SIGNIFICANCE: We describe that the first application of SMME can separate mouse serum proteins into six bands and identify the major protein components of each fraction in mouse serum separated by SMME. Furthermore, we successfully developed a fixation method for lectin blotting of SMME-separated glycoproteins and applied to the detection of glycosylation patterns of serum glycoproteins from Fut8+/+ and Fut8-/- mice, also, the method is promising for detecting glycan profiling differences between two samples in both research and clinical settings.
Collapse
Affiliation(s)
- Dongqi Liu
- China Medical University - The Queen's University of Belfast Joint College, Shenyang 110122, Liaoning, China
| | - Gang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yuqing Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yue Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yuanyuan Zheng
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Shanshan Sha
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Akihiko Kameyama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Open Space Laboratory C-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Weijie Dong
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
6
|
Kameyama A. Towards a Novel Platform for Mucin Analysis. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1918.2se] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Akihiko Kameyama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
7
|
Kameyama A. Towards a Novel Platform for Mucin Analysis. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1918.2sj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Akihiko Kameyama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
8
|
Abstract
Western blotting is the most extensively used technique for the identification and characterisation of proteins and their expression levels. One of the major issues with this technique is the loss of proteins from the blotted membrane during the incubation and washing steps, which affects its sensitivity and reproducibility. Here, we have optimised the fixation conditions for immunoblotting and lectin blotting on electroblotted polyvinylidene difluoride and nitrocellulose membranes, using a combination of organic solvents and heating. Loss of proteins from polyvinylidene difluoride membranes was greatly reduced using this approach, the intensity of lectin blotting and immunoblotting was shown to increase 2.8- to 15-fold and 1.8- to 16-fold, respectively, compared with that samples without treated. Using the optimised method, cystic fibrosis transmembrane regulator and hypoxia-inducible factor 1, two difficult-to-analyse proteins with important physiological and pathological roles, were effectively detected. Additionally, it may help the identification of novel diagnostic markers for prostate cancer.
Collapse
|
9
|
A practical method of liberating O-linked glycans from glycoproteins using hydroxylamine and an organic superbase. Biochem Biophys Res Commun 2019; 513:186-192. [PMID: 30952424 DOI: 10.1016/j.bbrc.2019.03.144] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
O-Linked glycan liberation from proteins through reductive beta-elimination and hydrazinolysis is widely used, but have yet to satisfy the recent needs for glycan analysis in glycan biomarker research and microheterogeneity evaluation of biopharmaceutical glycosylation. Here, we introduce an alternative method by using hydroxylamine and an organic superbase, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and optimize the reaction conditions. The developed method afforded comparable results to those of hydrazinolysis, but with less degraded products. In addition, we examined the compatibility of the optimized O-linked glycan liberation with denaturant and detergents. The optimized method also released glycans containing NeuGc without degradation or deacylation. To demonstrate the feasibility of the developed method, we analyzed O-linked glycans of porcine submaxillary mucins separated by supported molecular matrix electrophoresis (SMME) which is previously developed to characterize mucins. The method for O-linked glycan liberation and fluorescent labeling presented here was easy and rapid, and will be practically useful for O-linked glycan analyses.
Collapse
|
10
|
A sialo-oligosaccharide-rich mucin-like molecule specifically detected in the submandibular glands of aged mice. Arch Oral Biol 2019; 97:52-58. [DOI: 10.1016/j.archoralbio.2018.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/04/2018] [Indexed: 11/20/2022]
|
11
|
A rapid separation and characterization of mucins from mouse submandibular glands by supported molecular matrix electrophoresis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:76-81. [DOI: 10.1016/j.bbapap.2018.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/04/2018] [Accepted: 05/08/2018] [Indexed: 01/26/2023]
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
13
|
Abstract
Mucins are difficult to separate using conventional gel electrophoresis methods such as SDS-PAGE and agarose gel electrophoresis, owing to their large size and heterogeneity. On the other hand, cellulose acetate membrane electrophoresis can separate these molecules, but is not compatible with glycan analysis. Here, we describe a novel membrane electrophoresis technique, termed "supported molecular matrix electrophoresis" (SMME), in which a porous polyvinylidene difluoride (PVDF) membrane filter is used to achieve separation. This description includes the separation, visualization, and glycan analysis of mucins with the SMME technique.
Collapse
|
14
|
Kinoshita E, Kinoshita-Kikuta E, Koike T. The Cutting Edge of Affinity Electrophoresis Technology. Proteomes 2015; 3:42-55. [PMID: 28248262 PMCID: PMC5302491 DOI: 10.3390/proteomes3010042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 01/26/2015] [Accepted: 03/11/2015] [Indexed: 11/16/2022] Open
Abstract
Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years.
Collapse
Affiliation(s)
- Eiji Kinoshita
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Hiroshima 734-8553, Japan.
| | - Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Hiroshima 734-8553, Japan.
| | - Tohru Koike
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Hiroshima 734-8553, Japan.
| |
Collapse
|
15
|
Succinylation-Alcian Blue Staining of Mucins on Polyvinylidene Difluoride Membranes. Methods Mol Biol 2015; 1314:325-31. [PMID: 26139280 DOI: 10.1007/978-1-4939-2718-0_33] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alcian blue staining has been widely used to visualize acidic mucins and mucopolysaccharides in supported molecular matrix electrophoresis (SMME) and on membrane transferred from electrophoresis gels. Mucins with low acidic glycan content, however, cannot be stained with Alcian blue, which is one of the major drawbacks of this staining method. On the other hand, periodic acid-Schiff staining can selectively visualize glycoproteins, including mucins, regardless of the acidic residue content; however, periodic acid-Schiff staining decomposes glycans. Here, we introduce succinylation-Alcian blue staining as an alternative staining method to visualize mucins, regardless of the acidic residue content, and without glycan decomposition.
Collapse
|
16
|
Supported molecular matrix electrophoresis: a new membrane electrophoresis for characterizing glycoproteins. Methods Mol Biol 2014; 1200:327-33. [PMID: 25117247 DOI: 10.1007/978-1-4939-1292-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Protein blotting is often used for identification and characterization of proteins on a membrane to which proteins separated by gel electrophoresis are transferred. The transferring process is sometimes problematic, in particular, for mucins and proteoglycans. Here, we describe a novel membrane electrophoresis technique, termed supported molecular matrix electrophoresis (SMME), in which a porous polyvinylidene difluoride (PVDF) membrane filter is used as the separation support. Proteins separated by this method can be immunoblotted without any transferring procedures.
Collapse
|
17
|
Matsuno YK, Dong W, Yokoyama S, Yonezawa S, Narimatsu H, Kameyama A. Identification of mucins by using a method involving a combination of on-membrane chemical deglycosylation and immunostaining. J Immunol Methods 2013; 394:125-30. [DOI: 10.1016/j.jim.2013.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/17/2013] [Accepted: 06/05/2013] [Indexed: 02/05/2023]
|
18
|
Dong W, Matsuno YK, Kameyama A. Serum protein fractionation using supported molecular matrix electrophoresis. Electrophoresis 2013; 34:2432-9. [DOI: 10.1002/elps.201300154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Weijie Dong
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Open Space Laboratory C-2; Tsukuba; Ibaraki; Japan
| | - Yu-ki Matsuno
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Open Space Laboratory C-2; Tsukuba; Ibaraki; Japan
| | - Akihiko Kameyama
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Open Space Laboratory C-2; Tsukuba; Ibaraki; Japan
| |
Collapse
|
19
|
Dong W, Matsuno YK, Kameyama A. A procedure for Alcian blue staining of mucins on polyvinylidene difluoride membranes. Anal Chem 2012; 84:8461-6. [PMID: 22950532 DOI: 10.1021/ac301678z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The isolation and characterization of mucins are critically important for obtaining insight into the molecular pathology of various diseases, including cancers and cystic fibrosis. Recently, we developed a novel membrane electrophoretic method, supported molecular matrix electrophoresis (SMME), which separates mucins on a polyvinylidene difluoride (PVDF) membrane impregnated with a hydrophilic polymer. Alcian blue staining is widely used to visualize mucopolysaccharides and acidic mucins on both blotted membranes and SMME membranes; however, this method cannot be used to stain mucins with a low acidic glycan content. Meanwhile, periodic acid-Schiff staining can selectively visualize glycoproteins, including mucins, but is incompatible with glycan analysis, which is indispensable for mucin characterizations. Here we describe a novel staining method, designated succinylation-Alcian blue staining, for visualizing mucins on a PVDF membrane. This method can visualize mucins regardless of the acidic residue content and shows a sensitivity 2-fold higher than that of Pro-Q Emerald 488, a fluorescent periodate Schiff-base stain. Furthermore, we demonstrate the compatibility of this novel staining procedure with glycan analysis using porcine gastric mucin as a model mucin.
Collapse
Affiliation(s)
- Weijie Dong
- National Institute of Advanced Industrial Science and Technology (AIST), Open Space Laboratory C-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | |
Collapse
|
20
|
Yonezawa S, Higashi M, Yamada N, Yokoyama S, Kitamoto S, Kitajima S, Goto M. Mucins in human neoplasms: clinical pathology, gene expression and diagnostic application. Pathol Int 2011; 61:697-716. [PMID: 22126377 DOI: 10.1111/j.1440-1827.2011.02734.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mucins are high molecular weight glycoproteins that play important roles in carcinogenesis and tumor invasion. Our immunohistochemical studies demonstrated that MUC1 or MUC4 expression is related to the aggressive behavior and poor outcome of human neoplasms. MUC2 is expressed in indolent pancreatobiliary neoplasms, but these tumors sometimes show invasive growth with MUC1 expression in invasive areas. MUC5AC shows de novo high expression in many types of precancerous lesions of pancreatobiliary cancers and is an effective marker for early detection of the neoplasms. The combination of MUC1, MUC2, MUC4 and MUC5AC expression may be useful for early detection and evaluation of the potential for malignancy of pancreatobiliary neoplasms. Regarding the mechanism of mucin expression, we have recently reported that expression of the mucin genes is regulated epigenetically in cancer cell lines, using quantitative MassARRAY analysis, methylation-specific polymerase chain reaction analysis and chromatin immunoprecipitation analysis, with confirmation by the treatment with 5-aza-2'-deoxycytidine and trichostatin A. We have also developed a monoclonal antibody against the MUC1 cytoplasmic tail domain, which has many biological roles. Based on all of the above findings, we suggest that translational research into mucin gene expression mechanisms, including epigenetics, may provide new tools for early and accurate detection of human neoplasms.
Collapse
Affiliation(s)
- Suguru Yonezawa
- Department of Human Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | | | | | | | | | | | | |
Collapse
|