1
|
Hage DS. Back to nature: immunocapture and related methods for the selective analysis of pharmaceutical and biomedical samples. Bioanalysis 2025; 17:83-85. [PMID: 39632578 PMCID: PMC11801337 DOI: 10.1080/17576180.2024.2437308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- David S. Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
2
|
Sharmeen S, Suh K, Kyei I, Jones J, Olupathage H, Campbell A, Hage DS. Immunoaffinity Chromatography for Protein Purification and Analysis. Curr Protoc 2023; 3:e867. [PMID: 37610261 DOI: 10.1002/cpz1.867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Immunoaffinity chromatography (IAC) is a type of liquid chromatography that uses immobilized antibodies or related binding agents as selective stationary phases for sample separation or analysis. The strong binding and high selectivity of antibodies have made IAC a popular tool for the purification and analysis of many chemicals and biochemicals, including proteins. The basic principles of IAC are described as related to the use of this method for protein purification and analysis. The main factors to consider in this technique are also presented under a discussion of the general strategy to follow during the development of a new IAC method. Protocols, as illustrated using human serum albumin (HSA) as a model protein, are provided for the use of IAC in several formats. This includes both the use of IAC with traditional low-performance supports such as agarose for off-line immunoextraction and supports used in high-performance IAC for on-line immunoextraction. The use of IAC for protein analysis as a flow-based or chromatographic immunoassay is also discussed and described using HSA and a competitive binding assay format as an example. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Off-line immunoextraction by traditional immunoaffinity chromatography Basic Protocol 2: On-line immunoextraction by high-performance immunoaffinity chromatography Basic Protocol 3: Competitive binding chromatographic immunoassay.
Collapse
Affiliation(s)
- Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jacob Jones
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | | | - Avery Campbell
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
3
|
Miao H, Chen S, Ding R. Evaluation of the Molecular Mechanisms of Sepsis Using Proteomics. Front Immunol 2021; 12:733537. [PMID: 34745104 PMCID: PMC8566982 DOI: 10.3389/fimmu.2021.733537] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a complex syndrome promoted by pathogenic and host factors; it is characterized by dysregulated host responses and multiple organ dysfunction, which can lead to death. However, its underlying molecular mechanisms remain unknown. Proteomics, as a biotechnology research area in the post-genomic era, paves the way for large-scale protein characterization. With the rapid development of proteomics technology, various approaches can be used to monitor proteome changes and identify differentially expressed proteins in sepsis, which may help to understand the pathophysiological process of sepsis. Although previous reports have summarized proteomics-related data on the diagnosis of sepsis and sepsis-related biomarkers, the present review aims to comprehensively summarize the available literature concerning “sepsis”, “proteomics”, “cecal ligation and puncture”, “lipopolysaccharide”, and “post-translational modifications” in relation to proteomics research to provide novel insights into the molecular mechanisms of sepsis.
Collapse
Affiliation(s)
- He Miao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, China
| | - Song Chen
- Department of Trauma Intensive Care Unit, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Becker DJ, Czirják GÁ, Rynda-Apple A, Plowright RK. Handling Stress and Sample Storage Are Associated with Weaker Complement-Mediated Bactericidal Ability in Birds but Not Bats. Physiol Biochem Zool 2019; 92:37-48. [PMID: 30481115 DOI: 10.1086/701069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Variation in immune defense influences infectious disease dynamics within and among species. Understanding how variation in immunity drives pathogen transmission among species is especially important for animals that are reservoir hosts for zoonotic pathogens. Bats, in particular, have a propensity to host serious viral zoonoses without developing clinical disease themselves. The immunological adaptations that allow bats to host viruses without disease may be related to their adaptations for flight (e.g., in metabolism and mediation of oxidative stress). A number of analyses report greater richness of zoonotic pathogens in bats than in other taxa, such as birds (i.e., mostly volant vertebrates) and rodents (i.e., nonvolant small mammals), but immunological comparisons between bats and these other taxa are rare. To examine interspecific differences in bacterial killing ability (BKA), a functional measure of overall constitutive innate immunity, we use a phylogenetic meta-analysis to compare how BKA responds to the acute stress of capture and to storage time of frozen samples across the orders Aves and Chiroptera. After adjusting for host phylogeny, sample size, and total microbe colony-forming units, we find preliminary evidence that the constitutive innate immune defense of bats may be more resilient to handling stress and storage time than that of birds. This pattern was also similar when we analyzed the proportion of nonnegative and positive effect sizes per species, using phylogenetic comparative methods. We discuss potential physiological and evolutionary mechanisms by which complement proteins may differ between species orders and suggest future avenues for comparative field studies of immunity between sympatric bats, birds, and rodents in particular.
Collapse
|
5
|
Frost DC, Li L. Recent advances in mass spectrometry-based glycoproteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:71-123. [PMID: 24985770 DOI: 10.1016/b978-0-12-800453-1.00003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation plays fundamental roles in many biological processes as one of the most common, and the most complex, posttranslational modification. Alterations in glycosylation profile are now known to be associated with many diseases. As a result, the discovery and detailed characterization of glycoprotein disease biomarkers is a primary interest of biomedical research. Advances in mass spectrometry (MS)-based glycoproteomics and glycomics are increasingly enabling qualitative and quantitative approaches for site-specific structural analysis of protein glycosylation. While the complexity presented by glycan heterogeneity and the wide dynamic range of clinically relevant samples like plasma, serum, cerebrospinal fluid, and tissue make comprehensive analyses of the glycoproteome a challenging task, the ongoing efforts into the development of glycoprotein enrichment, enzymatic digestion, and separation strategies combined with novel quantitative MS methodologies have greatly improved analytical sensitivity, specificity, and throughput. This review summarizes current MS-based glycoproteomics approaches and highlights recent advances in its application to cancer biomarker and neurodegenerative disease research.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA; Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
6
|
Tvarijonaviciute A, Ceron JJ, de Torre C, Ljubić BB, Holden SL, Queau Y, Morris PJ, Pastor J, German AJ. Obese dogs with and without obesity-related metabolic dysfunction - a proteomic approach. BMC Vet Res 2016; 12:211. [PMID: 27646300 PMCID: PMC5028949 DOI: 10.1186/s12917-016-0839-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/10/2016] [Indexed: 12/12/2022] Open
Abstract
Background Approximately 20 % of obese dogs have metabolic disturbances similar to those observed in human metabolic syndrome, a condition known as obesity-related metabolic dysfunction. This condition is associated with insulin resistance and decreased circulating adiponectin concentrations, but clinical consequences have not been reported. In order to define better the metabolic changes associated with obesity-related metabolic dysfunction (ORMD), we compared the plasma proteomes of obese dogs with and without ORMD. A proteomic analysis was conducted on plasma samples from 8 obese male dogs, 4 with ORMD and 4 without ORMD. The samples were first treated for the depletion of high-abundance proteins and subsequently analysed by using 2-DE DIGE methodology. Results Using mass spectrometry, 12 proteins were identified: albumin, apoliprotein A-I, C2, C3, C5, C4BPA, A2M, Uncharacterised protein (Fragment) OS = Canis familiaris, fibrinogen, IGJ, ITIH2, and glutathione peroxidase. In obese dogs with ORMD, the relative amounts of ten proteins (albumin, apoliprotein A-I, C2, C3, C5, C4BPA, A2M, Uncharacterised protein (Fragment) OS = Canis familiaris, fibrinogen, and ITIH2) were increased and two proteins (IGJ and glutathione peroxidase) were decreased, compared with obese dogs without ORMD. Specific assays were then used to confirm differences in serum albumin, apoliprotein A-I and glutathione peroxidase in a separate group of 20 overweight dogs, 8 with ORMD and 12 without ORMD. Conclusions The current study provides evidence that, in obese dogs with ORMD, there are changes in expression of proteins involved in lipid metabolism, immune response, and antioxidant status. The clinical significance of these changes remains to be defined.
Collapse
Affiliation(s)
- Asta Tvarijonaviciute
- Departament de Medicina i Cirugia Animals, Universitat Autónoma de Barcelona, 08193, Barcelona, Spain. .,Interdisciplinary Laboratory of Clinical Pathology, Iterlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, Murcia, Spain.
| | - Jose J Ceron
- Interdisciplinary Laboratory of Clinical Pathology, Iterlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Carlos de Torre
- Unidad de Proteómica, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), IMIB-Arrixaca, 30120, Murcia, Spain
| | - Blanka B Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Shelley L Holden
- Department of Obesity and Endocrinology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral, CH64 7TE, UK
| | - Yann Queau
- Royal Canin Research Center, B.P.4-650 Avenue de la Petite Camargue, 30470, Aimargues, France
| | - Penelope J Morris
- The WALTHAM Centre for Pet Nutrition, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, LE14 4RT, UK
| | - Josep Pastor
- Departament de Medicina i Cirugia Animals, Universitat Autónoma de Barcelona, 08193, Barcelona, Spain
| | - Alexander J German
- Department of Obesity and Endocrinology, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral, CH64 7TE, UK
| |
Collapse
|
7
|
Štěpánová S, Kašička V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 2016; 933:23-42. [DOI: 10.1016/j.aca.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
8
|
Timms JF, Hale OJ, Cramer R. Advances in mass spectrometry-based cancer research and analysis: from cancer proteomics to clinical diagnostics. Expert Rev Proteomics 2016; 13:593-607. [DOI: 10.1080/14789450.2016.1182431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Deiber JA, Peirotti MB, Piaggio MV. Charge regulation phenomenon predicted from the modeling of polypeptide electrophoretic mobilities as a relevant mechanism of amyloid-beta peptide oligomerization. Electrophoresis 2016; 37:711-8. [DOI: 10.1002/elps.201500391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/10/2015] [Accepted: 12/16/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas, Facultad de Bioquímica y Ciencias Biológicas; UNL; Santa Fe Argentina
| |
Collapse
|
10
|
Gasilova N, Srzentić K, Qiao L, Liu B, Beck A, Tsybin YO, Girault HH. On-Chip Mesoporous Functionalized Magnetic Microspheres for Protein Sequencing by Extended Bottom-up Mass Spectrometry. Anal Chem 2016; 88:1775-84. [DOI: 10.1021/acs.analchem.5b04045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Natalia Gasilova
- Laboratory
of Physical and Analytical Electrochemistry, EPFL Valais, Ecole Polytechnique Fédérale de Lausanne, 1951 Sion, Valais, Switzerland
| | - Kristina Srzentić
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Vaud, Switzerland
| | - Liang Qiao
- Laboratory
of Physical and Analytical Electrochemistry, EPFL Valais, Ecole Polytechnique Fédérale de Lausanne, 1951 Sion, Valais, Switzerland
| | - Baohong Liu
- Department
of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, PR China
| | - Alain Beck
- Centre d’Immunologie
Pierre Fabre, 74160 St. Julien-en-Genevois, France
| | - Yury O. Tsybin
- Spectroswiss Sàrl, EPFL Innovation Park, 1015 Lausanne, Vaud, Switzerland
| | - Hubert H. Girault
- Laboratory
of Physical and Analytical Electrochemistry, EPFL Valais, Ecole Polytechnique Fédérale de Lausanne, 1951 Sion, Valais, Switzerland
| |
Collapse
|
11
|
Yang RH, Tian RF, Ren QL, Chui HY, Guo ST, Zhang XD, Song X. Serum protein profiles of patients with lung cancer of different histological types. Asia Pac J Clin Oncol 2015; 12:70-6. [PMID: 26668125 DOI: 10.1111/ajco.12441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/27/2015] [Accepted: 10/11/2015] [Indexed: 12/24/2022]
Abstract
AIMS To compare serum protein expression profiles between lung cancer patients and healthy individuals, and to examine whether there are differences in serum protein expression profiles among patients with lung cancers of different histological types and whether the characteristic expression of serum proteins may assist in differential diagnosis of various subtypes of lung cancers. METHODS Blood samples were collected from 123 lung cancer patients before commencement of treatment who attended Shanxi Cancer Hospital, China, between 2008 and 2013. Blood samples from 60 healthy individuals were also collected in the same period. Serum protein expression profiles were analyzed using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. The differences in the serum protein spectrums of lung cancer patients with different histological subtypes were analyzed by one-way Analysis of Variance and receiver operating characteristic curves. RESULTS A cluster of 48 protein mass-to-change ratio (M/Z) peaks was differentially expressed between sera of lung cancer patients and healthy individuals. The M/Z 1205, 4673, 1429 and 4279 peaks were differentially expressed among patients with lung squamous cell carcinomas, adenocarcinomas and small-cell lung carcinomas. CONCLUSION These results reinforce the notion that profiling of serum proteins may be of diagnostic value in lung cancer, and suggest that the differences in serum protein profiles may be useful in differential diagnosis of lung cancers of varying histological subtypes.
Collapse
Affiliation(s)
| | - Rui Fen Tian
- Pulmonary Oncology, Shanxi Cancer Hospital and Institute, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiao Li Ren
- Pulmonary Oncology, Shanxi Cancer Hospital and Institute, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong Ying Chui
- Pulmonary Oncology, Shanxi Cancer Hospital and Institute, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | | | - Xu Dong Zhang
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Xia Song
- Pulmonary Oncology, Shanxi Cancer Hospital and Institute, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Zhou Y, Meng Z, Edman-Woolcott M, Hamm-Alvarez SF, Zandi E. Multidimensional Separation Using HILIC and SCX Pre-fractionation for RP LC-MS/MS Platform with Automated Exclusion List-based MS Data Acquisition with Increased Protein Quantification. ACTA ACUST UNITED AC 2015; 8:260-265. [PMID: 26807013 PMCID: PMC4720167 DOI: 10.4172/jpb.1000378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) based proteomics is one of the most widely used analytical platforms for global protein discovery and quantification. One of the challenges is the difficulty of identifying low abundance biomarker proteins from limited biological samples. Extensive fractionation could expand proteomics dynamic range, however, at the cost of high sample and time consumption. Extensive fractionation would increase the sample need and the labeling cost. Also quantitative proteomics depending on high resolution MS have the limitation of spectral acquisition speed. Those practical problems hinder the in-depth quantitative proteomics analysis such as tandem mass tag (TMT) experiments. We found the joint use of hydrophilic interaction liquid chromatography (HILIC) and strong cation exchange Chromatography (SCX) prefractionation at medium level could improve MS/MS efficiency, increase proteome coverage, shorten analysis time and save valuable samples. In addition, we scripted a program, Exclusion List Convertor (ELC), which automates and streamlines data acquisition workflow using the precursor ion exclusion (PIE) method. PIE reduces redundancy of high abundance MS/MS analyses by running replicates of the sample. The precursor ions detected in the initial run(s) are excluded for MS/MS in the subsequent run. We compared PIE methods with standard data dependent acquisition (DDA) methods running replicates without PIE for their effectiveness in quantifying TMT-tagged peptides and proteins in mouse tears. We quantified a total of 845 proteins and 1401 peptides using the PIE workflow, while the DDA method only resulted in 347 proteins and 731 peptides. This represents a 144% increase of protein identifications as a result of PIE analysis.
Collapse
Affiliation(s)
- Yu Zhou
- USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Comprehensive Cancer Center, Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Zhen Meng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, California, USA
| | - Maria Edman-Woolcott
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, California, USA
| | - Sarah F Hamm-Alvarez
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, California, USA
| | - Ebrahim Zandi
- USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Comprehensive Cancer Center, Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
13
|
de Fátima MenegociEugênio P, Assunção NA, Sciandra F, Aquino A, Brancaccio A, Carrilho E. Quantification, 2DE analysis and identification of enriched glycosylated proteins from mouse muscles: Difficulties and alternatives. Electrophoresis 2015; 37:321-34. [PMID: 26542084 DOI: 10.1002/elps.201500362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 08/02/2015] [Accepted: 10/22/2015] [Indexed: 11/11/2022]
Abstract
One of the problems with 2DE is that proteins present in low amounts in a sample are usually not detected, since their signals are masked by the predominant proteins. The elimination of these abundant proteins is not a guaranteed solution to achieve the desired results. The main objective of this study was the comparison of common and simple methodologies employed for 2DE analysis followed by MS identification, focusing on a pre-purified sample using a wheat germ agglutinin (WGA) column. Adult male C57Black/Crj6 (C57BL/6) mice were chosen as the model animal in this study; the gastrocnemius muscles were collected and processed for the experiments. The initial fractionation with succinylated WGA was successful for the elimination of the most abundant proteins. Two quantification methods were employed for the purified samples, and bicinchoninic acid (BCA) was proven to be most reliable for the quantification of glycoproteins. The gel staining method, however, was found to be decisive for the detection of specific proteins, since their structures affect the interaction of the dye with the peptide backbone. The Coomassie Blue R-250 dye very weakly stained the gel with the WGA purified sample. When the same gel was stained with silver nitrate, however, MS could positively assign 12 new spots. The structure of the referred proteins was not found to be prone to interaction with Coomassie blue.
Collapse
Affiliation(s)
- Patrícia de Fátima MenegociEugênio
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP, Brazil
| | - Nilson Antonio Assunção
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare (CNR), c/o Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Adriano Aquino
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP, Brazil
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare (CNR), c/o Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP, Brazil
| |
Collapse
|
14
|
Triton X-114 cloud point extraction to subfractionate blood plasma proteins for two-dimensional gel electrophoresis. Anal Biochem 2015; 485:11-7. [DOI: 10.1016/j.ab.2015.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/13/2015] [Accepted: 05/25/2015] [Indexed: 11/21/2022]
|
15
|
da Costa JP, Carvalhais V, Ferreira R, Amado F, Vilanova M, Cerca N, Vitorino R. Proteome signatures—how are they obtained and what do they teach us? Appl Microbiol Biotechnol 2015. [PMID: 26205520 DOI: 10.1007/s00253-015-6795-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Sundberg M, Bergquist J, Ramström M. High-abundant protein depletion strategies applied on dog cerebrospinal fluid and evaluated by high-resolution mass spectrometry. Biochem Biophys Rep 2015; 3:68-75. [PMID: 30338299 PMCID: PMC6189695 DOI: 10.1016/j.bbrep.2015.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/27/2022] Open
Abstract
As the number of fully sequenced animal genomes and the performance of advanced mass spectrometry-based proteomics techniques are continuously improving, there is now a great opportunity to increase the knowledge of various animal proteomes. This research area is further stimulated by a growing interest from veterinary medicine and the pharmaceutical industry. Cerebrospinal fluid (CSF) is a good source for better understanding of diseases related to the central nervous system, both in humans and other animals. In this study, four high-abundant protein depletion columns, developed for human or rat serum, were evaluated for dog CSF. For the analysis, a shotgun proteomics approach, based on nanoLC-LTQ Orbitrap MS/MS, was applied. All the selected approaches were shown to deplete dog CSF with different success. It was demonstrated that the columns significantly improved the coverage of the detected dog CSF proteome. An antibody-based column showed the best performance, in terms of efficiency, repeatability and the number of proteins detected in the sample. In total 983 proteins were detected. Of those, 801 proteins were stated as uncharacterized in the UniProt database. To the best of our knowledge, this is the so far largest number of proteins reported for dog CSF in one single study. We evaluated four high-abundant protein depletion kits on dog CSF. High abundant depletion kit developed for humans/rats can be used for dog CSF. Protein depletion of dog CSF gives extended coverage of the CSF proteome. In total, 983 dog proteins were identified in this study.
Collapse
Affiliation(s)
- Mårten Sundberg
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| | - Margareta Ramström
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| |
Collapse
|
17
|
Abstract
The urinary proteome is the focus of many studies due to the ease of urine collection and the relative proteome stability. Systems biology allows the combination of multiple omics studies, forming a link between proteomics, metabolomics, genomics and transcriptomics. In-depth data interpretation is achieved by bioinformatics analysis of -omics data sets. It is expected that the contribution of systems biology to the study of the urinary proteome will offer novel insights. The main focus of this review is on technical aspects of proteomics studies, available tools for systems biology analysis and the application of urinary proteomics in clinical studies and systems biology.
Collapse
|
18
|
Mahboob S, Mohamedali A, Ahn SB, Schulz-Knappe P, Nice E, Baker MS. Is isolation of comprehensive human plasma peptidomes an achievable quest? J Proteomics 2015; 127:300-9. [PMID: 25979773 DOI: 10.1016/j.jprot.2015.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/06/2015] [Accepted: 05/09/2015] [Indexed: 01/12/2023]
Abstract
The low molecular weight (LMW; <10kDa)* plasma peptidome has been considered a source of useful diagnostic biomarkers and potentially therapeutic molecules, as it contains many cytokines, peptide hormones, endogenous peptide products and potentially bioactive fragments derived from the parent proteome. The small size of the peptides allows them almost unrestricted vascular and interstitial access, and hence distribution across blood-brain barriers, tumour and other vascular permeability barriers. Therefore, the peptidome may carry specific signatures or fingerprints of an individual's health, wellbeing or disease status. This occurs primarily because of the advantage the peptidome has in being readily accessible in human blood and/or other biofluids. However, the co-expression of highly abundant proteins (>10kDa) and other factors present inherently in human plasma make direct analysis of the blood peptidome one of the most challenging tasks faced in contemporary analytical biochemistry. A comprehensive compendium of extraction and fractionation tools has been collected concerning the isolation and micromanipulation of peptides. However, the search for a reliable, accurate and reproducible single or combinatorial separation process for capturing and analysing the plasma peptidome remains a challenge. This review outlines current techniques used for the separation and detection of plasma peptides and suggests potential avenues for future investigation. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- S Mahboob
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - A Mohamedali
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, NSW 2109, Australia
| | - S B Ahn
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | | | - E Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - M S Baker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
19
|
Puangpila C, El Rassi Z. Capturing and identification of differentially expressed fucome by a gel free and label free approach. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 989:112-21. [PMID: 25817263 PMCID: PMC4385428 DOI: 10.1016/j.jchromb.2015.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/28/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Abstract
This research reports a proof-of-concept that describes an instrumental approach that is gel free and label free at both the separation and mass spectrometry ends for the capturing and identification of differentially expressed proteins (DEPs) in diseases, e.g., cancers. The research consists of subjecting/processing equalized and non-equalized (i.e., untreated) disease-free and hepatocellular carcinoma (HCC) human sera via a multicolumn platform for capturing/fractionating human serum fucome. The equalization was performed via the combinatorial peptide ligand library (CPLL) beads technology that ensured narrowing the protein concentration range, thus allowing the detection of low abundance proteins. The equalized and non-equalized disease-free and HCC sera were first fractionated online onto two lectin columns specific to fucose, namely Aleuria aurantia lectin (AAL) and Lotus tetragonolobus agglutinin (LTA) followed by the online fractionation of the lectin captured fucome by reversed phase chromatography. The online desalted fractions were first subjected to trypsinolysis and then to liquid chromatography-mass spectrometry (LC-MS/MS) analysis. In comparison with untreated serum, the CPLL treated serum is superior in terms of the total number of identified DEPs, which reflected an increased number of DEPs in a wide abundance range. The DEPs in HCC serum were found to be 70 and 40 in both LTA and AAL fractions for the serum treated by CPLL and untreated serum, respectively. In addition, the platform combined with the CPLL treatment was accomplished with virtually no sample loss and dilution as well as with no experimental biases and sample labeling when comparing the diseased-free and cancer sera using LC-MS/MS.
Collapse
Affiliation(s)
- Chanida Puangpila
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States.
| |
Collapse
|
20
|
Detection and differentiation of 22kDa and 20kDa Growth Hormone proteoforms in human plasma by LC-MS/MS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:284-90. [DOI: 10.1016/j.bbapap.2014.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/09/2014] [Accepted: 12/23/2014] [Indexed: 11/20/2022]
|
21
|
Deiber JA, Peirotti MB, Piaggio MV. Global properties and propensity to dimerization of the amyloid-beta (12-28) peptide fragment through the modeling of its monomer and dimer diffusion coefficients and electrophoretic mobilities. Electrophoresis 2015; 36:805-12. [DOI: 10.1002/elps.201400395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/20/2014] [Accepted: 11/05/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas; Facultad de Bioquímica y Ciencias Biológicas, UNL; Santa Fe Argentina
| |
Collapse
|
22
|
Narahari T, Dendukuri D, Murthy SK. Tunable electrophoretic separations using a scalable, fabric-based platform. Anal Chem 2015; 87:2480-7. [PMID: 25582166 DOI: 10.1021/ac5045127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is a rising need for low-cost and scalable platforms for sensitive medical diagnostic testing. Fabric weaving is a mature, scalable manufacturing technology and can be used as a platform to manufacture microfluidic diagnostic tests with controlled, tunable flow. Given its scalability, low manufacturing cost (<$0.25 per device), and potential for patterning multiplexed channel geometries, fabric is a viable platform for the development of analytical devices. In this paper, we describe a fabric-based electrophoretic platform for protein separation. Appropriate yarns were selected for each region of the device and weaved into straight channel electrophoretic chips in a single step. A wide dynamic range of analyte molecules ranging from small molecule dyes (<1 kDa) to macromolecule proteins (67-150 kDa) were separated in the device. Individual yarns behave as a chromatographic medium for electrophoresis. We therefore explored the effect of yarn and fabric parameters on separation resolution. Separation speed and resolution were enhanced by increasing the number of yarns per unit area of fabric and decreasing yarn hydrophilicity. However, for protein analytes that often require hydrophilic, passivated surfaces, these effects need to be properly tuned to achieve well-resolved separations. A fabric device tuned for protein separations was built and demonstrated. As an analytical output parameter for this device, the electrophoretic mobility of a sedimentation marker, Naphthol Blue Black bovine albumin in glycine-NaOH buffer, pH 8.58 was estimated and found to be -2.7 × 10(-8) m(2) V(-1) s(-1). The ability to tune separation may be used to predefine regions in the fabric for successive preconcentrations and separations. The device may then be applied for the multiplexed detection of low abundance proteins from complex biological samples such as serum and cell lysate.
Collapse
Affiliation(s)
- Tanya Narahari
- Department of Chemical Engineering, Northeastern University , Boston 02115, Massachusetts, United States
| | | | | |
Collapse
|
23
|
Xia L, Lin F, Wu X, Liu C, Wang J, Tang Q, Yu S, Huang K, Deng Y, Geng L. On-chip protein isoelectric focusing using a photoimmobilized pH gradient†. J Sep Sci 2014; 37:3174-80. [DOI: 10.1002/jssc.201400795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 07/23/2014] [Accepted: 08/02/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Lin Xia
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - FengMing Lin
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Xin Wu
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Chuanli Liu
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Jianshe Wang
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Qi Tang
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Shiyong Yu
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Kunjie Huang
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Yulin Deng
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Lina Geng
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| |
Collapse
|
24
|
Malá Z, Gebauer P, Boček P. Recent progress in analytical capillary isotachophoresis. Electrophoresis 2014; 36:2-14. [DOI: 10.1002/elps.201400337] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Zdena Malá
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Petr Boček
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
25
|
Cheong WJ, Zaidi SA, Kim YS. An Open Tubular CEC Column of Excellent Separation Efficiency for Proteomic Analysis. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.10.3115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Shishkin SS, Kovalev LI, Kovaleva MA, Ivanov AV, Eremina LS, Sadykhov EG. The application of proteomic technologies for the analysis of muscle proteins of farm animals used in the meat industry (Review). APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814050093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Righetti PG, Candiano G, Citterio A, Boschetti E. Combinatorial Peptide Ligand Libraries as a “Trojan Horse” in Deep Discovery Proteomics. Anal Chem 2014; 87:293-305. [DOI: 10.1021/ac502171b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pier Giorgio Righetti
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio
Natta”, Via Mancinelli
7, Milano 20131, Italy
| | - Giovanni Candiano
- Laboratory on Pathophysiology of Uremia
and Department of Nephrology, Istituto Giannina Gaslini, Genova, Italy
| | - Attilio Citterio
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio
Natta”, Via Mancinelli
7, Milano 20131, Italy
| | | |
Collapse
|
28
|
Deiber JA, Piaggio MV, Peirotti MB. Estimation of electrokinetic and hydrodynamic global properties of relevant amyloid-beta peptides through the modeling of their effective electrophoretic mobilities and analysis of their propensities to aggregation. J Sep Sci 2014; 37:2618-24. [DOI: 10.1002/jssc.201400533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 01/27/2023]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas; Facultad de Bioquímica y Ciencias Biológicas, UNL; Santa Fe Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| |
Collapse
|
29
|
Oliveira BM, Coorssen JR, Martins-de-Souza D. 2DE: the phoenix of proteomics. J Proteomics 2014; 104:140-50. [PMID: 24704856 DOI: 10.1016/j.jprot.2014.03.035] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Given the rapid developments in mass spectrometry (MS) in terms of sensitivity, mass accuracy, and throughput, some have suggested that two-dimensional gel electrophoresis (2DE) may no longer be a method of choice for proteomic analyses. However, as recognition of issues with these newer shotgun-MS approaches grows, there is a fresh and growing regard for the maturity of 2DE-MS as a genuine top-down analytical approach, particularly as it resolves thousands of intact protein species in a single run, enabling the simultaneous analysis of total protein complement, including isoforms and post-translational modifications. Given the strengths of both, it is most appropriate to view these as complementary or at least parallel approaches: as proteins encompass a myriad of physico-chemical properties, and the real aim is to explore proteomes as deeply as possible, all available resolving strategies must be considered in terms of the complexity encountered. It is time to critically and constructively focus on the optimization and integration of existing techniques rather than simplistically suggesting that one should replace the other. Our intention here is thus to present an overview of protein resolving techniques, focusing on milestones associated with 2DE, including pros, cons, advances and variations, in particular relative to shotgun proteomic approaches. BIOLOGICAL SIGNIFICANCE Proteomic researchers recognize the importance of 2DE in the history of proteomics. But the latest developments in mass spectrometry-based techniques have led some researchers to retire 2DE in their labs. However, we argue here that 2DE-MS is a genuine top-down analytical approach. The significance of this discussion is to make proteomic researchers aware of the importance of this technique in a proteomic pipeline. This article is part of a Special Issue entitled: Environmental and structural proteomics.
Collapse
Affiliation(s)
- Bruno M Oliveira
- Catarinense Federal Institute, Videira Campus, Videira, SC, Brazil
| | - Jens R Coorssen
- Dept. of Molecular Physiology, School of Medicine, University of Western Sydney, Australia; UWS Molecular Medicine Research Group, University of Western Sydney, Australia.
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil; Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil; Dept. of Psychiatry and Psychotherapy, Ludwig Maximilians University (LMU), Munich, Germany.
| |
Collapse
|
30
|
Pernemalm M, Lehtiö J. Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev Proteomics 2014; 11:431-48. [PMID: 24661227 DOI: 10.1586/14789450.2014.901157] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mass spectrometry-based plasma proteomics is a field where intense research has been performed during the last decade. Being closely linked to biomarker discovery, the field has received a fair amount of criticism, mostly due to the low number of novel biomarkers reaching the clinic. However, plasma proteomics is under gradual development with improvements on fractionation methods, mass spectrometry instrumentation and analytical approaches. These recent developments have contributed to the revival of plasma proteomics. The goal of this review is to summarize these advances, focusing in particular on fractionation methods, both for targeted and global mass spectrometry-based plasma analysis.
Collapse
Affiliation(s)
- Maria Pernemalm
- Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23, 171 65, Solna, Sweden
| | | |
Collapse
|
31
|
Robledo VR, Smyth WF. Review of the CE-MS platform as a powerful alternative to conventional couplings in bio-omics and target-based applications. Electrophoresis 2014; 35:2292-308. [DOI: 10.1002/elps.201300561] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Virginia Rodríguez Robledo
- Faculty of Pharmacy; Department of Analytical Chemistry and Food Technology; University of Castilla-La Mancha (UCLM); Albacete Spain
| | - William Franklin Smyth
- School of Pharmacy and Pharmaceutical Sciences; University of Ulster; Coleraine Northern Ireland UK
| |
Collapse
|
32
|
Tůma P. Rapid determination of globin chains in red blood cells by capillary electrophoresis using INSTCoated fused-silica capillary. J Sep Sci 2014; 37:1026-32. [DOI: 10.1002/jssc.201400044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Petr Tůma
- Institute of Biochemistry; Cell and Molecular Biology, Third Faculty of Medicine, Charles University; Prague 10 Czech Republic
| |
Collapse
|
33
|
Selvaraju S, El Rassi Z. Targeting deeper the human serum fucome by a liquid-phase multicolumn platform in combination with combinatorial peptide ligand libraries. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 951-952:135-42. [PMID: 24556279 PMCID: PMC3959646 DOI: 10.1016/j.jchromb.2014.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/15/2014] [Accepted: 01/23/2014] [Indexed: 12/25/2022]
Abstract
Combinatorial peptide ligand library (CPLL) was evaluated as an off line step to narrow the differences of protein concentration in human serum prior to the capturing of human fucome from disease-free and breast cancer sera by a multicolumn platform via lectin affinity chromatography (LAC) followed by the fractionation of the captured glycoproteins by reversed phase chromatography (RPC). Two monolithic lectin columns specific to fucose, namely Aleuria aurantia lectin (AAL) and Lotus tetragonolobus agglutinin (LTA) columns were utilized to capture the fucome, which was subsequently fractionated by RPC yielding desalted fractions in volatile acetonitrile-rich mobile phase, which after vacuum evaporation were subjected to tryptic digestion prior to LC-MS/MS analysis. AAL has a strong affinity towards core fucosylated N-glycans and has a weak binding towards fucose in the outer arm while LTA can bind to glycans having fucose present in the outer arm. The combined strategy consisting of the CPLL, multicolumn platform and LC-MS/MS analysis permitted the identification of the differentially expressed proteins (DEPs) in breast cancer serum yielding 58 DEPs in both the LTA and AAL fractions with 6 DEPs common to both lectins. 17 DEPs were of the low abundance type, 16 DEPs of the borderline abundance type, 4 DEPs of the medium abundance type and 15 DEPs of the high abundance type. The remaining 6 DEPs are of unknown concentration. Only proteins exhibiting 99.9% protein identification probability, 95% peptide identification probability, and a minimum of 5 unique peptides were considered in finding the DEPs via scatterplots.
Collapse
Affiliation(s)
- Subhashini Selvaraju
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States.
| |
Collapse
|
34
|
Duša F, Šlais K. Simple power supply for power load controlled isoelectric focusing. Electrophoresis 2014; 35:1114-7. [DOI: 10.1002/elps.201300518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/25/2013] [Accepted: 12/16/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Filip Duša
- Institute of Analytical Chemistry of Academy of Sciences of the Czech Republic; v. v. i. Brno Czech Republic
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Karel Šlais
- Institute of Analytical Chemistry of Academy of Sciences of the Czech Republic; v. v. i. Brno Czech Republic
| |
Collapse
|
35
|
Yang X, Li L, Song J, Palmer LC, Li X, Zhang Z. Peptide prefractionation is essential for proteomic approaches employing multiple-reaction monitoring of fruit proteomic research. J Sep Sci 2013; 37:77-84. [DOI: 10.1002/jssc.201301041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 11/09/2022]
Affiliation(s)
- XiaoTang Yang
- College of Horticulture; South China Agriculture University; Guangzhou P. R. China
| | - Li Li
- Key Laboratory of Food Nutrition and Safety; Tianjin University of Science and Technology; Ministry of Education; Tianjin P. R. China
| | - Jun Song
- Atlantic Food and Horticulture Research Centre; Agriculture and Agri-Food Canada Kentville; Nova Scotia Canada
| | - Leslie Campbell Palmer
- Atlantic Food and Horticulture Research Centre; Agriculture and Agri-Food Canada Kentville; Nova Scotia Canada
| | - XiHong Li
- Key Laboratory of Food Nutrition and Safety; Tianjin University of Science and Technology; Ministry of Education; Tianjin P. R. China
| | - ZhaoQi Zhang
- College of Horticulture; South China Agriculture University; Guangzhou P. R. China
| |
Collapse
|
36
|
Deiber JA, Piaggio MV, Peirotti MB. Global chain properties of an alll-α-eicosapeptide with a secondary α-helix and its all retrod-inverso-α-eicosapeptide estimated through the modeling of their CZE-determined electrophoretic mobilities. Electrophoresis 2013; 35:755-61. [DOI: 10.1002/elps.201300395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/26/2013] [Accepted: 10/11/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas; Facultad de Bioquímica y Ciencias Biológicas; UNL; Santa Fe Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| |
Collapse
|
37
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2011-2013). Electrophoresis 2013; 35:69-95. [PMID: 24255019 DOI: 10.1002/elps.201300331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/15/2023]
Abstract
The review presents a comprehensive survey of recent developments and applications of capillary and microchip electroseparation methods (zone electrophoresis, ITP, IEF, affinity electrophoresis, EKC, and electrochromatography) for analysis, isolation, purification, and physicochemical and biochemical characterization of peptides. Advances in the investigation of electromigration properties of peptides, in the methodology of their analysis, including sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, as well as in detection of peptides, are presented. New developments in particular CE and CEC modes are reported and several types of their applications to peptide analysis are described: conventional qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC techniques to provide relevant physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
38
|
Recent developments in microfluidic chip-based separation devices coupled to MS for bioanalysis. Bioanalysis 2013; 5:2567-80. [DOI: 10.4155/bio.13.196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In recent years, the development of microfluidic chip separation devices coupled to MS has dramatically increased for high-throughput bioanalysis. In this review, advances in different types of microfluidic chip separation devices, such as electrophoresis- and LC-based microchips, as well as 2D design of microfluidic chip-based separation devices will be discussed. In addition, the utilization of chip-based separation devices coupled to MS for analyzing peptides/proteins, glycans, drug metabolites and biomarkers for various bioanalytical applications will be evaluated.
Collapse
|
39
|
Deiber JA, Piaggio MV, Peirotti MB. Evaluation of the slip length in the slipping friction between background electrolytes and peptides through the modeling of their capillary zone electrophoretic mobilities. Electrophoresis 2013; 34:2648-54. [DOI: 10.1002/elps.201300102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/30/2013] [Accepted: 04/02/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); UNL, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe; Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas; Facultad de Bioquímica y Ciencias Biológicas; Universidad Nacional del Litoral (UNL); Santa Fe; Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); UNL, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe; Argentina
| |
Collapse
|
40
|
Kalli A, Smith GT, Sweredoski MJ, Hess S. Evaluation and optimization of mass spectrometric settings during data-dependent acquisition mode: focus on LTQ-Orbitrap mass analyzers. J Proteome Res 2013; 12:3071-86. [PMID: 23642296 DOI: 10.1021/pr3011588] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass-spectrometry-based proteomics has evolved as the preferred method for the analysis of complex proteomes. Undoubtedly, recent advances in mass spectrometry instrumentation have greatly enhanced proteomic analysis. A popular instrument platform in proteomics research is the LTQ-Orbitrap mass analyzer. In this tutorial, we discuss the significance of evaluating and optimizing mass spectrometric settings on the LTQ-Orbitrap during CID data-dependent acquisition (DDA) mode to improve protein and peptide identification rates. We focus on those MS and MS/MS parameters that have been systematically examined and evaluated by several researchers and are commonly used during DDA. More specifically, we discuss the effect of mass resolving power, preview mode for FTMS scan, monoisotopic precursor selection, signal threshold for triggering MS/MS events, number of microscans per MS/MS scan, number of MS/MS events, automatic gain control target value (ion population) for MS and MS/MS, maximum ion injection time for MS/MS, rapid and normal scan rate, and prediction of ion injection time. We furthermore present data from the latest generation LTQ-Orbitrap system, the Orbitrap Elite, along with recommended MS and MS/MS parameters. The Orbitrap Elite outperforms the Orbitrap Classic in terms of scan speed, sensitivity, dynamic range, and resolving power and results in higher identification rates. Several of the optimized MS parameters determined on the LTQ-Orbitrap Classic and XL were easily transferable to the Orbitrap Elite, whereas others needed to be reevaluated. Finally, the Q Exactive and HCD are briefly discussed, as well as sample preparation, LC-optimization, and bioinformatics analysis. We hope this tutorial will serve as guidance for researchers new to the field of proteomics and assist in achieving optimal results.
Collapse
Affiliation(s)
- Anastasia Kalli
- Proteome Exploration Laboratory, Division of Biology, Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
41
|
Azzam S, Broadwater L, Li S, Freeman EJ, McDonough J, Gregory RB. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns. Proteome Sci 2013; 11:19. [PMID: 23635033 PMCID: PMC3682907 DOI: 10.1186/1477-5956-11-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/25/2013] [Indexed: 12/21/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Results Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein isoform 8 (MBP8) (14.2 kDa) levels were lower in EAE samples with advanced disease relative to controls, while an MBP fragment (12. 4kDa), likely due to calpain digestion, was increased in EAE relative to controls. The appearance of MBP in mitochondrially enriched fractions is due to tissue freezing and storage, as MBP was not found associated with mitochondria obtained from fresh tissue. Conclusions SELDI mass spectrometry can be employed to explore the proteome of a complex tissue (brain) and obtain protein profiles of differentially expressed proteins from protein fractions. Appropriate homogenization protocols and protein fractionation using anion exchange beads can be employed to reduce sample complexity without introducing significant additional variation into the SELDI mass spectra beyond that inherent in the SELDI- MS method itself. SELDI-MS coupled with principal component analysis and hierarchical cluster analysis provides protein patterns that can clearly distinguish the disease state from controls. However, identification of individual differentially expressed proteins requires a separate purification of the proteins of interest by polyacrylamide electrophoresis prior to trypsin digestion and peptide mass fingerprint analysis, and unambiguous identification of differentially expressed proteins can be difficult if protein bands consist of several proteins with similar molecular weights.
Collapse
Affiliation(s)
- Sausan Azzam
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Krüger T, Lehmann T, Rhode H. Effect of quality characteristics of single sample preparation steps in the precision and coverage of proteomic studies—A review. Anal Chim Acta 2013; 776:1-10. [DOI: 10.1016/j.aca.2013.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 11/25/2022]
|
43
|
Selvaraju S, El Rassi Z. Targeting human serum fucome by an integrated liquid-phase multicolumn platform operating in "cascade" to facilitate comparative mass spectrometric analysis of disease-free and breast cancer sera. Proteomics 2013; 13:1701-13. [PMID: 23533108 DOI: 10.1002/pmic.201200524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/08/2013] [Accepted: 03/12/2013] [Indexed: 11/06/2022]
Abstract
A fully integrated platform was developed for capturing/fractionating human fucome from disease-free and breast cancer sera. It comprised a multicolumn operated by HPLC pumps and switching valves for the simultaneous depletion of high abundance proteins via affinity-based subtraction and the capturing of fucosylated glycoproteins via lectin affinity chromatography followed by the fractionation of the captured glycoproteins by reversed phase chromatography (RPC). Two lectin columns specific to fucose, namely Aleuria aurantia lectin (AAL) and Lotus tetragonolobus agglutinin (LTA) were utilized. The platform allowed the "cascading" of the serum sample from column-to-column in the liquid phase with no sample manipulation between the various steps. This guaranteed no sample loss and no propagation of experimental biases between the various columns. Finally, the fucome was fractionated by RPC yielding desalted fractions in volatile acetonitrile-rich mobile phase, which after vacuum evaporation were subjected to trypsinolysis for LC-MS/MS analysis. This permitted the identification of the differentially expressed proteins (DEP) in breast cancer serum yielding a broad panel of 35 DEP from the combined LTA and AAL captured proteins and a narrower panel of eight DEP that were commonly differentially expressed in both LTA and AAL fractions, which are considered as more representative of cancer altered fucome.
Collapse
Affiliation(s)
- Subhashini Selvaraju
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, USA
| | | |
Collapse
|
44
|
Yang C, Luan X, Zhao M, Liu G, Wang J, Qu Q, Hu X. Pending templates imprinted polymers-hypothesis, synthesis, adsorption, and chromatographic properties. Electrophoresis 2013; 34:1383-9. [DOI: 10.1002/elps.201200589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Chun Yang
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou; China
| | - Xinjie Luan
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou; China
| | - Meifeng Zhao
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou; China
| | - Guofeng Liu
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou; China
| | - Jian Wang
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou; China
| | - Qishu Qu
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou; China
| | - Xiaoya Hu
- College of Chemistry & Chemical Engineering; Yangzhou University; Yangzhou; China
| |
Collapse
|
45
|
Espinal JH, Gómez JE, Sandoval JE. Closer look at the operating definition of protein recovery in CE. Electrophoresis 2013; 34:1141-7. [PMID: 23400851 DOI: 10.1002/elps.201200514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/01/2012] [Accepted: 12/10/2012] [Indexed: 11/09/2022]
Abstract
Analyte recovery is an important figure to assess protein adsorption on fused-silica capillaries. In 1991, Regnier et al. estimated recovery by assuming the loss of analyte from adsorption and thus the decrease in peak area measured by two detectors to be proportional to the length of the capillary section between them. In this report, we closely examine this concept and its adaptation to commercial CE instruments to determine protein recovery. We hypothesize that, once a steady-state migration is reached, protein adsorption is a first-order process with respect to protein concentration and surface density of adsorbing sites. This hypothesis is shown to be valid over a reasonably wide range of capillary effective length and, as a result, protein recovery decreases exponentially with the migrated distance. However, unlike the traditional recovery figure obtained through a conventional spike process, protein recovery measured by this approach does not have the same merit since it is strongly dependent from capillary dimensions and applied electric field. Nevertheless, protein recovery and the slope of the logarithmic protein peak area versus length plot are useful figures to compare protein adsorption on different capillary surfaces. Several literature reports dealing with the application of Regnier concept to calculate protein recovery are discussed.
Collapse
Affiliation(s)
- Jose H Espinal
- Department of Chemistry, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
46
|
Deiber JA, Piaggio MV, Peirotti MB. Determination of electrokinetic and hydrodynamic parameters of proteins by modeling their electrophoretic mobilities through the electrically charged spherical porous particle. Electrophoresis 2013; 34:700-7. [DOI: 10.1002/elps.201200405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/02/2012] [Accepted: 10/17/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe; Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas; Facultad de Bioquímica y Ciencias Biológicas; UNL; Santa Fe; Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe; Argentina
| |
Collapse
|
47
|
Ning M, Lopez M, Cao J, Buonanno FS, Lo EH. Application of proteomics to cerebrovascular disease. Electrophoresis 2012; 33:3582-97. [PMID: 23161401 PMCID: PMC3712851 DOI: 10.1002/elps.201200481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/12/2022]
Abstract
While neurovascular diseases such as ischemic and hemorrhagic stroke are the leading causes of disability in the world, the repertoire of therapeutic interventions has remained remarkably limited. There is a dire need to develop new diagnostic, prognostic, and therapeutic options. The study of proteomics is particularly enticing for cerebrovascular diseases such as stroke, which most likely involve multiple gene interactions resulting in a wide range of clinical phenotypes. Currently, rapidly progressing neuroproteomic techniques have been employed in clinical and translational research to help identify biologically relevant pathways, to understand cerebrovascular pathophysiology, and to develop novel therapeutics and diagnostics. Future integration of proteomic with genomic, transcriptomic, and metabolomic studies will add new perspectives to better understand the complexities of neurovascular injury. Here, we review cerebrovascular proteomics research in both preclinical (animal, cell culture) and clinical (blood, urine, cerebrospinal fluid, microdialyates, tissue) studies. We will also discuss the rewards, challenges, and future directions for the application of proteomics technology to the study of various disease phenotypes. To capture the dynamic range of cerebrovascular injury and repair with a translational targeted and discovery approach, we emphasize the importance of complementing innovative proteomic technology with existing molecular biology models in preclinical studies, and the need to advance pharmacoproteomics to directly probe clinical physiology and gauge therapeutic efficacy at the bedside.
Collapse
Affiliation(s)
- Mingming Ning
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
48
|
Maurer MH. Genomic and proteomic advances in autism research. Electrophoresis 2012; 33:3653-8. [PMID: 23160986 DOI: 10.1002/elps.201200382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 01/10/2023]
Abstract
Recent studies suggest that adult neural stem cells (NSCs) may play a role in the pathogenesis of a number of the developmental disorders subsumed under the term autism spectrum disorders (ASD) that have in common impaired social interaction, communication deficits, and stereotypical behavior or interests. Since there is no "unifying hypothesis" about the etiology and pathogenesis of ASD, several factors have been associated with ASD, including genetic factors, physical co-morbidity, disturbances of brain structure and function, biochemical anomalies, cognitive impairment, and disorders of speech and emotional development, mostly the lack of empathy. Most of disturbances of brain interconnectivity are regarded as main problem in autism. Since NSCs have a distinct life cycle in the mammalian brain consisting of proliferation, migration, arborization, integration into existing neuronal circuits, and myelinization, disturbances in NSCs differentiation is thought to be deleterious. In the current review, I will summarize the results of genomic and proteomic studies finding susceptibility genes and proteins for autism with regard to NSCs differentiation and maturation.
Collapse
Affiliation(s)
- Martin H Maurer
- Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
49
|
Tvarijonaviciute A, Gutiérrez AM, Miller I, Razzazi-Fazeli E, Tecles F, Ceron JJ. A proteomic analysis of serum from dogs before and after a controlled weight-loss program. Domest Anim Endocrinol 2012; 43:271-7. [PMID: 22591953 DOI: 10.1016/j.domaniend.2012.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/07/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate how weight-loss program would alter the proteome of the serum of Beagle dogs. For this purpose, serum samples from 5 Beagle dogs, before and after weight loss, were analyzed using 2-dimensional electrophoresis. Protein profiles of all samples were obtained, divided into 2 classes (obese and lean), and compared using specific 2-dimensional software, giving a total of 144 spot matches. Statistical analysis revealed 3 spot matches whose expressions were modulated in response to weight loss: 2 protein spots were upregulated and 1 protein spot was downregulated in the obese state in comparison with the lean state of the dogs. Mass spectrometric identification of differentially regulated spots revealed that these protein spots corresponded to retinol-binding protein 4, clusterin precursor, and α-1 antitrypsin, respectively, which could be considered potential markers of obesity and obesity-related disease processes in dogs.
Collapse
Affiliation(s)
- A Tvarijonaviciute
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Espinardo, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Amado FML, Ferreira RP, Vitorino R. One decade of salivary proteomics: current approaches and outstanding challenges. Clin Biochem 2012; 46:506-17. [PMID: 23103441 DOI: 10.1016/j.clinbiochem.2012.10.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/13/2012] [Accepted: 10/16/2012] [Indexed: 12/12/2022]
Abstract
Efforts have been made in the last decade towards the complete characterization of saliva proteome using gel-based and gel-free approaches. The combination of these strategies resulted in the increment of the dynamic range of saliva proteome, which yield in the identification of more than 3,000 different protein species. Comparative protein profiling using isotope labeling and label free approaches has been used for the identification of novel biomarkers for oral and related diseases. Although progresses have been made in saliva proteome characterization, the comparative profiling in different pathophysiological conditions is still at the beginning if compared to other bodily fluids. The potential biomarkers identified so far lack specificity once common differentially expressed proteins were detected in the saliva of patients with distinct diseases. In addition, recent research works focused on saliva peptidome profiling already allowed a better understanding of peptides' physiological role in oral cavity. This review provides an overview of the major achievements in saliva proteomics giving emphasis to methodological concerns related with saliva collection, treatment and analysis, as well as the main advantages and pitfalls underlying salivary proteomic strategies and potential clinical outcomes.
Collapse
Affiliation(s)
- Francisco M L Amado
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | | | | |
Collapse
|