1
|
Liu Y, He W, Lu Z, Wang J, Sun C, Su J, Mo C, You H. A pH-mediated field amplification sample stacking technique based on portable microchip electrophoresis heavy metal ion detection system. ANAL SCI 2023; 39:1475-1482. [PMID: 37209382 DOI: 10.1007/s44211-023-00364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
We built a portable microchip electrophoresis heavy metal ion detection system and proposed a pH-mediated field amplified sample stacking (pH-mediated FASS) online preconcentration method. The pH-mediated FASS focuses and stacks heavy metal cations by controlling electrophoretic mobilities with a pH change between the analyte and the background electrolyte (BGE) in solution to improve the detection sensitivity of the system. We optimized and adjusted sample matrix solution (SMS) ratios and pH to create concentration and pH gradients for SMS and BGE. Furthermore, we optimize the microchannel width to improve the preconcentration effect further. The system and method analyzed soil leachates polluted with heavy metals and separated Pb2+ and Cd2+ within 90 s, obtaining their levels at 58.01 mg/L and 4.91 mg/L with sensitivity enhancement factors (SEF) of 26.40 and 43.73. Compared with inductively coupled plasma atomic emission spectrometry (ICP-AES), the detection error of the system was less than 8.80%.
Collapse
Affiliation(s)
- Yaping Liu
- School of Mechanical Engineering, Guangxi University, Nanning, 530004, China
| | - Wenhe He
- School of Electrical Engineering, Guangxi University, Nanning, 530004, China
| | - Zihao Lu
- School of Mechanical Engineering, Guangxi University, Nanning, 530004, China
| | - Jianjiao Wang
- School of Mechanical Engineering, Guangxi University, Nanning, 530004, China
| | - Cuimin Sun
- School of Computer, Electronics and Information, Guangxi University, Nanning, 530004, China
| | - Jian Su
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, 530007, China
| | - Chengwu Mo
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, 530007, China
| | - Hui You
- School of Mechanical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Hu T, Lai Q, Fan W, Zhang Y, Liu Z. Advances in Portable Heavy Metal Ion Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:4125. [PMID: 37112466 PMCID: PMC10143460 DOI: 10.3390/s23084125] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Heavy metal ions, one of the major pollutants in the environment, exhibit non-degradable and bio-chain accumulation characteristics, seriously damage the environment, and threaten human health. Traditional heavy metal ion detection methods often require complex and expensive instruments, professional operation, tedious sample preparation, high requirements for laboratory conditions, and operator professionalism, and they cannot be widely used in the field for real-time and rapid detection. Therefore, developing portable, highly sensitive, selective, and economical sensors is necessary for the detection of toxic metal ions in the field. This paper presents portable sensing based on optical and electrochemical methods for the in situ detection of trace heavy metal ions. Progress in research on portable sensor devices based on fluorescence, colorimetric, portable surface Raman enhancement, plasmon resonance, and various electrical parameter analysis principles is highlighted, and the characteristics of the detection limits, linear detection ranges, and stability of the various sensing methods are analyzed. Accordingly, this review provides a reference for the design of portable heavy metal ion sensing.
Collapse
|
3
|
A Novel Planar Grounded Capacitively Coupled Contactless Conductivity Detector for Microchip Electrophoresis. MICROMACHINES 2022; 13:mi13030394. [PMID: 35334684 PMCID: PMC8953769 DOI: 10.3390/mi13030394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
In the microchip electrophoresis with capacitively coupled contactless conductivity detection, the stray capacitance of the detector causes high background noise, which seriously affects the sensitivity and stability of the detection system. To reduce the effect, a novel design of planar grounded capacitively coupled contactless conductivity detector (PG-C4D) based on printed circuit board (PCB) is proposed. The entire circuit plane except the sensing electrodes is covered by the ground electrode, greatly reducing the stray capacitance. The efficacy of the design has been verified by the electrical field simulation and the electrophoresis detection experiments of inorganic ions. The baseline intensity of the PG-C4D was less than 1/6 of that of the traditional C4D. The PG-C4D with the new design also demonstrated a good repeatability of migration time, peak area, and peak height (n = 5, relative standard deviation, RSD ≤ 0.3%, 3%, and 4%, respectively), and good linear coefficients within the range of 0.05–0.75 mM (R2 ≥ 0.986). The detection sensitivity of K+, Na+, and Li+ reached 0.05, 0.1, and 0.1 mM respectively. Those results prove that the new design is an effective and economical approach which can improve sensitivity and repeatability of a PCB based PG-C4D, which indicate a great application potential in agricultural and environmental monitoring.
Collapse
|
4
|
Bosma R, Devasagayam J, Eswar R, Albuquerque IDF, Collier CM. Voltage control for microchip capillary electrophoresis analyses. Electrophoresis 2020; 41:1961-1968. [PMID: 32840905 DOI: 10.1002/elps.202000116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022]
Abstract
This paper presents an inexpensive and easy-to-implement voltage sequencer instrument for use in microchip capillary electrophoresis (MCE) actuation. The voltage sequencer instrument takes a 0-5 V input signal from a microcontroller and produces a reciprocally proportional voltage signal with the capability to achieve the voltages required for MCE actuation. The unit developed in this work features four independent voltage channels, measures 105 × 143 × 45 mm (width × length × height), and the cost to assemble is under 60 USD. The system is controlled by a peripheral interface controller and commands are given via universal serial bus connection to a personal computer running a command line graphical user interface. The performance of the voltage sequencer is demonstrated by its integration with a fluorescence spectroscopy MCE sensor using pinched sample injection and electrophoretic separation to detect ciprofloxacin in samples of milk. This application is chosen as it is particularly important for the dairy industry, where fines and health concerns are associated with the shipping of antibiotic-contaminated milk. The voltage sequencer instrument presented represents an effective low-cost instrumentation method for conducting MCE, thereby making these experiments accessible and affordable for use in industries such as the dairy industry.
Collapse
Affiliation(s)
- Rick Bosma
- School of Engineering, College of Engineering and Physical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jasen Devasagayam
- School of Engineering, College of Engineering and Physical Sciences, University of Guelph, Guelph, ON, Canada
| | - Rahul Eswar
- School of Engineering, College of Engineering and Physical Sciences, University of Guelph, Guelph, ON, Canada
| | - Iasmin de França Albuquerque
- School of Engineering, College of Engineering and Physical Sciences, University of Guelph, Guelph, ON, Canada.,Electrical Engineering, Federal Institute of ParaÍba, João Pessoa, PB, Brazil
| | - Christopher M Collier
- School of Engineering, College of Engineering and Physical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Caruso G, Musso N, Grasso M, Costantino A, Lazzarino G, Tascedda F, Gulisano M, Lunte SM, Caraci F. Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis. MICROMACHINES 2020; 11:E593. [PMID: 32549277 PMCID: PMC7344675 DOI: 10.3390/mi11060593] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
The last decades of biological, toxicological, and pharmacological research have deeply changed the way researchers select the most appropriate 'pre-clinical model'. The absence of relevant animal models for many human diseases, as well as the inaccurate prognosis coming from 'conventional' pre-clinical models, are among the major reasons of the failures observed in clinical trials. This evidence has pushed several research groups to move more often from a classic cellular or animal modeling approach to an alternative and broader vision that includes the involvement of microfluidic-based technologies. The use of microfluidic devices offers several benefits including fast analysis times, high sensitivity and reproducibility, the ability to quantitate multiple chemical species, and the simulation of cellular response mimicking the closest human in vivo milieu. Therefore, they represent a useful way to study drug-organ interactions and related safety and toxicity, and to model organ development and various pathologies 'in a dish'. The present review will address the applicability of microfluidic-based technologies in different systems (2D and 3D). We will focus our attention on applications of microchip electrophoresis (ME) to biological and toxicological studies as well as in drug discovery and development processes. These include high-throughput single-cell gene expression profiling, simultaneous determination of antioxidants and reactive oxygen and nitrogen species, DNA analysis, and sensitive determination of neurotransmitters in biological fluids. We will discuss new data obtained by ME coupled to laser-induced fluorescence (ME-LIF) and electrochemical detection (ME-EC) regarding the production and degradation of nitric oxide, a fundamental signaling molecule regulating virtually every critical cellular function. Finally, the integration of microfluidics with recent innovative technologies-such as organoids, organ-on-chip, and 3D printing-for the design of new in vitro experimental devices will be presented with a specific attention to drug development applications. This 'composite' review highlights the potential impact of 2D and 3D microfluidic systems as a fast, inexpensive, and highly sensitive tool for high-throughput drug screening and preclinical toxicological studies.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Margherita Grasso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Angelita Costantino
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Massimo Gulisano
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| |
Collapse
|
6
|
Chen X, Hong F, Zhang W, Wu D, Li T, Hu F, Gan N, Lin J, Wang Q. Microchip electrophoresis based multiplexed assay for silver and mercury ions simultaneous detection in complex samples using a stirring bar modified with encoded hairpin probes for specific extraction. J Chromatogr A 2019; 1589:173-181. [PMID: 30635170 DOI: 10.1016/j.chroma.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/14/2018] [Accepted: 01/03/2019] [Indexed: 02/04/2023]
Abstract
It is crucially important to rapidly, simultaneously, and sensitively determine trace amounts of heavy metal ions in complex samples. Herein, a stirring bar modified with two kinds of encoded hairpin DNA probes (H0 and H0') was used in a multiplexed strategy allowing for specific extraction of Hg2+ and Ag+ coupled to microchip electrophoresis (MCE) separation and LED induced fluorescence (LIF) detection. The extraction step utilizes stir bars, which are functionalized with designed hairpin DNA probes (H0 with TT and H0' with CC mismatches in stems). This allows the specific capture of Hg2+ and Ag+ through CAg+C and THg2+T interactions. These complexes are then enzymatically degraded by the action of exonuclease III (Exo III). The ions released during this enzymatic reaction can initiate a new cycle of interactions with hairpin structures and enzymatic reactions and so on. This cyclic step is specific to the presence of Hg2+ and Ag+ and represents the first round of amplification of the presence of the selected ions. The resulting single strand DNAs on the stirring bars after enzymatic degradation were used in the second step as primers to trigger the catalytic hairpin assembly (CHA) in the presence of a couple of hairpin structures in solution. Such a reaction allows producing duplexes that can be monitored by MCE-LIF. The fluorescence intensity of CHA products (IP) increased and that of hairpin DNAs (IR) decreased with the increase of target concentrations. The signal ratios (IP/IR and IP'/IR') consisted of targets. The assay was employed for Hg2+ and Ag+ detection in several mediums including water, milk, and fish samples with complex matrices. The results showed that the assay could avoid matrix interference to increase the sensitivity. Therefore, the multiplexed assay was ideal to simultaneously and quickly detect metal ions in complex samples.
Collapse
Affiliation(s)
- Xixue Chen
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Feng Hong
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Weilin Zhang
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Dazhen Wu
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Tianhua Li
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China
| | - Futao Hu
- Faculty of marine, Ningbo University, Ningbo, 31521, China
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 31521, China.
| | - Jianyuan Lin
- Zhejiang Wanli University, Ningbo, 315100, China.
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Pinheiro KMP, Moreira RC, Rezende KCA, Talhavini M, Logrado LPL, Baio JAF, Lanza MRV, Coltro WKT. Rapid separation of post-blast explosive residues on glass electrophoresis microchips. Electrophoresis 2018; 40:462-468. [DOI: 10.1002/elps.201800245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 01/21/2023]
Affiliation(s)
| | - Roger C. Moreira
- Instituto de Química; Universidade Federal de Goiás; Goiânia GO Brazil
| | | | - Márcio Talhavini
- Instituto Nacional de Criminalística; Polícia Federal Brasileira; Brasília DF Brazil
| | | | - José A. F. Baio
- Instituto de Química de São Carlos; Universidade de São Paulo; São Carlos SP Brazil
| | - Marcos R. V. Lanza
- Instituto de Química de São Carlos; Universidade de São Paulo; São Carlos SP Brazil
| | - Wendell K. T. Coltro
- Instituto de Química; Universidade Federal de Goiás; Goiânia GO Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica; Campinas SP Brazil
| |
Collapse
|
8
|
YANG MP, HUANG Z, XIE Y, YOU H. Development of Microchip Electrophoresis and Its Applications in Ion Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61085-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Separation of metal ions via capillary electrophoresis using a pseudostationary phase microfunctionalized with carbon nanotubes. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2172-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Ali I, Alharbi OML, Marsin Sanagi M. Nano-capillary electrophoresis for environmental analysis. ENVIRONMENTAL CHEMISTRY LETTERS 2015; 14:79-98. [PMID: 32214934 PMCID: PMC7087629 DOI: 10.1007/s10311-015-0547-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/11/2015] [Indexed: 06/10/2023]
Abstract
Many analytical techniques have been used to monitor environmental pollutants. But most techniques are not capable to detect pollutants at nanogram levels. Hence, under such conditions, absence of pollutants is often assumed, whereas pollutants are in fact present at low but undetectable concentrations. Detection at low levels may be done by nano-capillary electrophoresis, also named microchip electrophoresis. Here, we review the analysis of pollutants by nano-capillary electrophoresis. We present instrumentations, applications, optimizations and separation mechanisms. We discuss the analysis of metal ions, pesticides, polycyclic aromatic hydrocarbons, explosives, viruses, bacteria and other contaminants. Detectors include ultraviolet-visible, fluorescent, conductivity, atomic absorption spectroscopy, refractive index, atomic fluorescence spectrometry, atomic emission spectroscopy, inductively coupled plasma, inductively coupled plasma-mass spectrometry, mass spectrometry, time-of-flight mass spectrometry and nuclear magnetic resonance. Detection limits ranged from nanogram to picogram levels.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, 110025 India
| | - Omar M. L. Alharbi
- Biology Department, Faculty of Sciences, Taibah University, P.O. Box 30002, Madinah Al-Munawarah, 41477 Saudi Arabia
| | - Mohd. Marsin Sanagi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor Malaysia
- Ibnu Sina Institute for Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor Malaysia
| |
Collapse
|
11
|
Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK, Allbritton NL. Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 2013; 85:451-72. [PMID: 23140554 PMCID: PMC3546124 DOI: 10.1021/ac3031543] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michelle L. Kovarik
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas M. Ornoff
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Adam T. Melvin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nicholas C. Dobes
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Alexandra J. Dickinson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Philip C. Gach
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pavak K. Shah
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
12
|
Kubáň P, Hauser PC. Contactless conductivity detection for analytical techniques: Developments from 2010 to 2012. Electrophoresis 2012; 34:55-69. [DOI: 10.1002/elps.201200358] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Pavel Kubáň
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; Brno; Czech Republic
| | - Peter C. Hauser
- Department of Chemistry; University of Basel; Basel; Switzerland
| |
Collapse
|