1
|
Momo J, Rawoof A, Kumar A, Islam K, Ahmad I, Ramchiary N. Proteomics of Reproductive Development, Fruit Ripening, and Stress Responses in Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:65-95. [PMID: 36584279 DOI: 10.1021/acs.jafc.2c06564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fruits of the tomato crop (Solanum lycopersicum L.) are increasingly consumed by humans worldwide. Due to their rich nutritional quality, pharmaceutical properties, and flavor, tomato crops have gained a salient role as standout crops among other plants. Traditional breeding and applied functional research have made progress in varying tomato germplasms to subdue biotic and abiotic stresses. Proteomic investigations within a span of few decades have assisted in consolidating the functional genomics and transcriptomic research. However, due to the volatility and dynamicity of proteins in the regulation of various biosynthetic pathways, there is a need for continuing research in the field of proteomics to establish a network that could enable a more comprehensive understanding of tomato growth and development. With this view, we provide a comprehensive review of proteomic studies conducted on the tomato plant in past years, which will be useful for future breeders and researchers working to improve the tomato crop.
Collapse
Affiliation(s)
- John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Ilyas Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| |
Collapse
|
2
|
Cui Y, Tabang DN, Zhang Z, Ma M, Alpert AJ, Li L. Counterion Optimization Dramatically Improves Selectivity for Phosphopeptides and Glycopeptides in Electrostatic Repulsion-Hydrophilic Interaction Chromatography. Anal Chem 2021; 93:7908-7916. [PMID: 34042420 DOI: 10.1021/acs.analchem.1c00615] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A well-hydrated counterion can selectively and dramatically increase retention of a charged analyte in hydrophilic interaction chromatography. The effect is enhanced if the column is charged, as in electrostatic repulsion-hydrophilic interaction chromatography (ERLIC). This combination was exploited in proteomics for the isolation of peptides with certain post-translational modifications (PTMs). The best salt additive examined was magnesium trifluoroacetate. The well-hydrated Mg+2 ion promoted retention of peptides with functional groups that retained negative charge at low pH, while the poorly hydrated trifluoroacetate counterion tuned down the retention due to the basic residues. The result was an enhancement in selectivity ranging from 6- to 66-fold. These conditions were applied to a tryptic digest of mouse cortex. Gradient elution produced fractions enriched in peptides with phosphate, mannose-6-phosphate, and N- and O-linked glycans. The numbers of such peptides identified either equaled or exceeded the numbers afforded by the best alternative methods. This method is a productive and convenient way to isolate peptides simultaneously that contain a number of different PTMs, facilitating study of proteins with "crosstalk" modifications. The fractions from the ERLIC column were desalted prior to C-18-reversed phase liquid chromatography-tandem mass spectrometry analysis. Between 47-100% of the peptides with more than one phosphate or sialyl residue or with a mannose-6 phosphate group were not retained by a C-18 cartridge but were retained by a cartridge of porous graphitic carbon. This finding implies that the abundance of such peptides may have been significantly underestimated in some past studies.
Collapse
Affiliation(s)
- Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Dylan Nicholas Tabang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zishan Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Andrew J Alpert
- PolyLC Inc., 9151 Rumsey Road, ste. 180, Columbia, Maryland 21045, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, Wisconsin 53705, United States
| |
Collapse
|
3
|
Stiving AQ, Harvey SR, Jones BJ, Bellina B, Brown JM, Barran PE, Wysocki VH. Coupling 193 nm Ultraviolet Photodissociation and Ion Mobility for Sequence Characterization of Conformationally-Selected Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2313-2320. [PMID: 32959654 PMCID: PMC8127984 DOI: 10.1021/jasms.0c00259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ultraviolet photodissociation (UVPD) has emerged as a useful technique for characterizing peptide, protein, and protein complex primary and secondary structure. 193 nm UVPD, specifically, enables extensive covalent fragmentation of the peptide backbone without the requirement of a specific side chain chromophore and with no precursor charge state dependence. We have modified a commercial quadrupole-ion mobility-time-of-flight (Q-IM-TOF) mass spectrometer to include 193 nm UVPD following ion mobility. Ion mobility (IM) is a gas-phase separation technique that enables separation of ions by their size, shape, and charge, providing an orthogonal dimension of separation to mass analysis. Following instrument modifications, we characterized the performance of, and information that could be generated from, this new setup using the model peptides substance P, melittin, and insulin chain B. These experiments show extensive fragmentation across the peptide backbone and a variety of ion types as expected from 193 nm UVPD. Additionally, y-2 ions (along with complementary a+2 and b+2 ions) N-terminal to proline were observed. Combining the IM separation and mobility gating capabilities with UVPD, we demonstrate the ability to accomplish both mass- and mobility-selection of bradykinin des-Arg9 and des-Arg1 peptides followed by complete sequence characterization by UVPD. The new capabilities of this modified instrument demonstrate the utility of combining IM with UVPD because isobaric species cannot be independently selected with a traditional quadrupole alone.
Collapse
Affiliation(s)
- Alyssa Q Stiving
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Benjamin J Jones
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bruno Bellina
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, and Photon Science Institute, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | | | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, and Photon Science Institute, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Ye Z, Sangireddy SR, Yu CL, Hui D, Howe K, Fish T, Thannhauser TW, Zhou S. Comparative Proteomics of Root Apex and Root Elongation Zones Provides Insights into Molecular Mechanisms for Drought Stress and Recovery Adjustment in Switchgrass. Proteomes 2020; 8:3. [PMID: 32092968 PMCID: PMC7151713 DOI: 10.3390/proteomes8010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
Switchgrass plants were grown in a Sandwich tube system to induce gradual drought stress by withholding watering. After 29 days, the leaf photosynthetic rate decreased significantly, compared to the control plants which were watered regularly. The drought-treated plants recovered to the same leaf water content after three days of re-watering. The root tip (1cm basal fragment, designated as RT1 hereafter) and the elongation/maturation zone (the next upper 1 cm tissue, designated as RT2 hereafter) tissues were collected at the 29th day of drought stress treatment, (named SDT for severe drought treated), after one (D1W) and three days (D3W) of re-watering. The tandem mass tags mass spectrometry-based quantitative proteomics analysis was performed to identify the proteomes, and drought-induced differentially accumulated proteins (DAPs). From RT1 tissues, 6156, 7687, and 7699 proteins were quantified, and 296, 535, and 384 DAPs were identified in the SDT, D1W, and D3W samples, respectively. From RT2 tissues, 7382, 7255, and 6883 proteins were quantified, and 393, 587, and 321 proteins DAPs were identified in the SDT, D1W, and D3W samples. Between RT1 and RT2 tissues, very few DAPs overlapped at SDT, but the number of such proteins increased during the recovery phase. A large number of hydrophilic proteins and stress-responsive proteins were induced during SDT and remained at a higher level during the recovery stages. A large number of DAPs in RT1 tissues maintained the same expression pattern throughout drought treatment and the recovery phases. The DAPs in RT1 tissues were classified in cell proliferation, mitotic cell division, and chromatin modification, and those in RT2 were placed in cell wall remodeling and cell expansion processes. This study provided information pertaining to root zone-specific proteome changes during drought and recover phases, which will allow us to select proteins (genes) as better defined targets for developing drought tolerant plants. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD017441.
Collapse
Affiliation(s)
- Zhujia Ye
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (Z.Y.); (S.R.S.)
| | - Sasikiran Reddy Sangireddy
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (Z.Y.); (S.R.S.)
| | - Chih-Li Yu
- Department of Biological Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (C.-L.Y.); (D.H.)
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (C.-L.Y.); (D.H.)
| | - Kevin Howe
- Functional & Comparative Proteomics Center, USDA-ARS, Ithaca, NY 14853, USA; (K.H.); (T.F.)
| | - Tara Fish
- Functional & Comparative Proteomics Center, USDA-ARS, Ithaca, NY 14853, USA; (K.H.); (T.F.)
| | | | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (Z.Y.); (S.R.S.)
| |
Collapse
|
5
|
Cui Y, Yang K, Tabang DN, Huang J, Tang W, Li L. Finding the Sweet Spot in ERLIC Mobile Phase for Simultaneous Enrichment of N-Glyco and Phosphopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2491-2501. [PMID: 31286442 PMCID: PMC6917886 DOI: 10.1007/s13361-019-02230-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 05/30/2023]
Abstract
Simultaneous enrichment of glyco- and phosphopeptides will benefit the studies of biological processes regulated by these posttranslational modifications (PTMs). It will also reveal potential crosstalk between these two ubiquitous PTMs. Unlike custom-designed multifunctional solid phase extraction (SPE) materials, operating strong anion exchange (SAX) resin in electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) mode provides a readily available strategy to analytical labs for enrichment of these PTMs for subsequent mass spectrometry (MS)-based characterization. However, the choice of mobile phase has largely relied on empirical rules from hydrophilic interaction chromatography (HILIC) or ion-exchange chromatography (IEX) without further optimization and adjustments. In this study, ten mobile phase compositions of ERLIC were systematically compared; the impact of multiple factors including organic phase proportion, ion pairing reagent, pH, and salt on the retention of glycosylated and phosphorylated peptides was evaluated. This study demonstrated good enrichment of glyco- and phosphopeptides from the nonmodified peptides in a complex tryptic digest. Moreover, the enriched glyco- and phosphopeptides elute in different fractions by orthogonal retention mechanisms of hydrophilic interaction and electrostatic interaction in ERLIC, maximizing the LC-MS identification of each PTM. The optimized mobile phase can be adapted to the ERLIC HPLC system, where the high resolution in separating multiple PTMs will benefit large-scale MS-based PTM profiling and in-depth characterization.
Collapse
Affiliation(s)
- Yusi Cui
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Ka Yang
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA
| | | | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA
| | - Weiping Tang
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA.
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
6
|
Zadražnik T, Moen A, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J. Towards a better understanding of protein changes in common bean under drought: A case study of N-glycoproteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:400-412. [PMID: 28711789 DOI: 10.1016/j.plaphy.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Drought is one of the major abiotic stress conditions limiting crop growth and productivity. Glycosylation of proteins is very important post-translational modification that is involved in many physiological functions and biological pathways. To understand the involvement of N-glycoproteins in the mechanism of drought response in leaves of common bean, a proteomic approach using lectin affinity chromatography, SDS-PAGE and LC-MS/MS was applied. Quantification of N-glycoproteins was performed using MaxQuant with a label free quantification approach. Thirty five glycoproteins were changed in abundance in leaves of common bean under drought. The majority of these proteins were classified into functional groups that include cell wall processes, defence/stress related proteins and proteins related to proteolysis. Beta-glucosidase showed the highest increase in abundance among proteins involved in cell wall metabolism, suggesting its role in cell wall modification under drought stress. These results fit with the general concept of the stress response in plants and suggest that drought stress might affect biochemical metabolism in the cell wall. The structures of N-glycans were determined manually from spectra, where structures of high mannose, complex and hybrid types of N-glycans were found. The present study provided an insight into the glycoproteins related to drought stress in common bean at the proteome level, which is important for further understanding of molecular mechanisms of drought response in this important legume.
Collapse
Affiliation(s)
- Tanja Zadražnik
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia.
| | - Anders Moen
- University of Oslo, Department of Molecular Biosciences, 0316 Oslo, Norway
| | | | - Vladimir Meglič
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
7
|
Quantification of N-glycosylation site occupancy status based on labeling/label-free strategies with LC-MS/MS. Talanta 2017; 170:509-513. [PMID: 28501204 DOI: 10.1016/j.talanta.2017.04.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/30/2022]
Abstract
Protein N-glycosylation plays important roles in physiological and pathological processes. Characterizing the site-specific N-glycosylation including N-glycan macroheterogeneity (glycosylation site occupancy) and microheterogeneity (site-specific glycan structure) is important for understanding of glycoprotein biosynthesis and function. N-Glycan macroheterogeneity is a physiological property of glycoprotein and the technical obstacles have restricted research into the regulation and functions of this heterogeneity. Quantification of N-glycosylation site occupancy would uncover the critical role of macroheterogeneity in a variety of biological properties. Liquid chromatography (LC)- mass spectrometry (MS)-based quantification is emerging as a powerful tool for glycosylation characterization. This review summarizes the labeling and label-free quantitative MS approaches for quantifying N-glycosylation site occupancy, including its quantification for target glycoproteins in recent years.
Collapse
|
8
|
Sougrakpam Y, Deswal R. Hippophae rhamnoides N-glycoproteome analysis: a small step towards sea buckthorn proteome mining. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:473-484. [PMID: 27924120 PMCID: PMC5120047 DOI: 10.1007/s12298-016-0390-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 05/09/2023]
Abstract
Hippophae rhamnoides is a hardy shrub capable of growing under extreme environmental conditions namely, high salt, drought and cold. Its ability to grow under extreme conditions and its wide application in pharmaceutical and nutraceutical industry calls for its in-depth analysis. N-glycoproteome mining by con A affinity chromatography from seedling was attempted. The glycoproteome was resolved on first and second dimension gel electrophoresis. A total of 48 spots were detected and 10 non-redundant proteins were identified by MALDI-TOF/TOF. Arabidopsis thaliana protein disulfide isomerase-like 1-4 (ATPDIL1-4) electron transporter, protein disulphide isomerase, calreticulin 1 (CRT1), glycosyl hydrolase family 38 (GH 38) protein, phantastica, maturase k, Arabidopsis trithorax related protein 6 (ATXR 6), cysteine protease inhibitor were identified out of which ATXR 6, phantastica and putative ATPDIL1-4 electron transporter are novel glycoproteins. Calcium binding protein CRT1 was validated for its calcium binding by stains all staining. GO analysis showed involvement of GH 38 and ATXR 6 in glycan and lysine degradation pathways. This is to our knowledge the first report of glycoproteome analysis for any Elaeagnaceae member.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
9
|
Ye Z, Sangireddy S, Okekeogbu I, Zhou S, Yu CL, Hui D, Howe KJ, Fish T, Thannhauser TW. Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings. Int J Mol Sci 2016; 17:ijms17081251. [PMID: 27490537 PMCID: PMC5000649 DOI: 10.3390/ijms17081251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/24/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022] Open
Abstract
Switchgrass (Panicum virgatum) is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a “sandwich” system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress) and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ) labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS) analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome) expressed a significant difference (p < 0.05, fold change <0.6 or >1.7) from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA)-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes) that can be employed to improve switchgrass seedling growth and establishment under soil drought conditions (Data are available via ProteomeXchange with identifier PXD004675).
Collapse
Affiliation(s)
- Zhujia Ye
- Department of Agricultural Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA.
| | - Sasikiran Sangireddy
- Department of Agricultural Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA.
| | - Ikenna Okekeogbu
- Department of Agricultural Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA.
| | - Suping Zhou
- Department of Agricultural Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA.
| | - Chih-Li Yu
- Department of Biological Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA.
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA.
| | - Kevin J Howe
- Functional & Comparative Proteomics Center, USDA-ARS, Cornell University, Ithaca, NY 14853, USA.
| | - Tara Fish
- Functional & Comparative Proteomics Center, USDA-ARS, Cornell University, Ithaca, NY 14853, USA.
| | - Theodore W Thannhauser
- Functional & Comparative Proteomics Center, USDA-ARS, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Zhou S, Okekeogbu I, Sangireddy S, Ye Z, Li H, Bhatti S, Hui D, McDonald DW, Yang Y, Giri S, Howe KJ, Fish T, Thannhauser TW. Proteome Modification in Tomato Plants upon Long-Term Aluminum Treatment. J Proteome Res 2016; 15:1670-84. [DOI: 10.1021/acs.jproteome.6b00128] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Suping Zhou
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Ikenna Okekeogbu
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Sasikiran Sangireddy
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Zhujia Ye
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Hui Li
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Sarabjit Bhatti
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Dafeng Hui
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Daniel W. McDonald
- Phenotype Screening Corporation, 4028 Papermill Road, Knoxville, Tennessee 37909, United States
| | - Yong Yang
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Shree Giri
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Kevin J. Howe
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Tara Fish
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Theodore W. Thannhauser
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Huang J, Kast J. Quantitative Glycoproteomic Analysis Identifies Platelet-Induced Increase of Monocyte Adhesion via the Up-Regulation of Very Late Antigen 5. J Proteome Res 2015; 14:3015-26. [PMID: 26159767 DOI: 10.1021/acs.jproteome.5b00407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.
Collapse
Affiliation(s)
- Jiqing Huang
- †The Biomedical Research Centre, ‡Department of Chemistry, and §Centre for Blood Research, University of British Columbia, Vancouver, B. C. V6T 1Z3, Canada
| | - Juergen Kast
- †The Biomedical Research Centre, ‡Department of Chemistry, and §Centre for Blood Research, University of British Columbia, Vancouver, B. C. V6T 1Z3, Canada
| |
Collapse
|
12
|
Thaysen-Andersen M, Packer NH. Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1437-52. [PMID: 24830338 DOI: 10.1016/j.bbapap.2014.05.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Site-specific structural characterization of glycoproteins is important for understanding the exact functional relevance of protein glycosylation. Resulting partly from the multiple layers of structural complexity of the attached glycans, the system-wide site-specific characterization of protein glycosylation, defined as glycoproteomics, is still far from trivial leaving the N- and O-linked glycoproteomes significantly under-defined. However, recent years have seen significant advances in glycoproteomics driven, in part, by the developments of dedicated workflows and efficient sample preparation, including glycopeptide enrichment and prefractionation. In addition, glycoproteomics has benefitted from the continuous performance enhancement and more intelligent use of liquid chromatography and tandem mass spectrometry (LC-MS/MS) instrumentation and a wider selection of specialized software tackling the unique challenges of glycoproteomics data. Together these advances promise more streamlined N- and O-linked glycoproteome analysis. Tangible examples include system-wide glycoproteomics studies detecting thousands of intact glycopeptides from hundreds of glycoproteins from diverse biological samples. With a strict focus on the system-wide site-specific analysis of protein N- and O-linked glycosylation, we review the recent advances in LC-MS/MS based glycoproteomics. The review opens with a more general discussion of experimental designs in glycoproteomics and sample preparation prior to LC-MS/MS based data acquisition. Although many challenges still remain, it becomes clear that glycoproteomics, one of the last frontiers in proteomics, is gradually maturing enabling a wider spectrum of researchers to access this new emerging research discipline. The next milestone in analytical glycobiology is being reached allowing the glycoscientist to address the functional importance of protein glycosylation in a system-wide yet protein-specific manner.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
| | - Nicolle H Packer
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
13
|
Effect of Aluminum Treatment on Proteomes of Radicles of Seeds Derived from Al-Treated Tomato Plants. Proteomes 2014; 2:169-190. [PMID: 28250376 PMCID: PMC5302739 DOI: 10.3390/proteomes2020169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022] Open
Abstract
Aluminum (Al) toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive Al3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 µM AlK(SO4)2. Seeds harvested from Al-treated plants contained a significantly higher Al content than those grown in the control hydroponic solution. In this study, these Al-enriched tomato seeds (harvested from Al-treated tomato plants) were germinated in 50 µM AlK(SO4)2 solution in a homopiperazine-1,4-bis(2-ethanesulfonic acid) buffer (pH 4.0), and the control solution which contained the buffer only. Proteomes of radicles were analyzed quantitatively by mass spectrometry employing isobaric tags for relative and absolute quantitation (iTRAQ®). The proteins identified were assigned to molecular functional groups and cellular metabolic pathways using MapMan. Among the proteins whose abundance levels changed significantly were: a number of transcription factors; proteins regulating gene silencing and programmed cell death; proteins in primary and secondary signaling pathways, including phytohormone signaling and proteins for enhancing tolerance to abiotic and biotic stress. Among the metabolic pathways, enzymes in glycolysis and fermentation and sucrolytic pathways were repressed. Secondary metabolic pathways including the mevalonate pathway and lignin biosynthesis were induced. Biological reactions in mitochondria seem to be induced due to an increase in the abundance level of mitochondrial ribosomes and enzymes in the TCA cycle, electron transport chains and ATP synthesis.
Collapse
|
14
|
Barba-Espín G, Dedvisitsakul P, Hägglund P, Svensson B, Finnie C. Gibberellic acid-induced aleurone layers responding to heat shock or tunicamycin provide insight into the N-glycoproteome, protein secretion, and endoplasmic reticulum stress. PLANT PHYSIOLOGY 2014; 164:951-65. [PMID: 24344171 PMCID: PMC3912118 DOI: 10.1104/pp.113.233163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The growing relevance of plants for the production of recombinant proteins makes understanding the secretory machinery, including the identification of glycosylation sites in secreted proteins, an important goal of plant proteomics. Barley (Hordeum vulgare) aleurone layers maintained in vitro respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping effects on both the intracellular and secreted proteomes. Proteins in a total of 22 and 178 two-dimensional gel spots changing in intensity in extracellular and intracellular fractions, respectively, were identified by mass spectrometry. Among these are proteins with key roles in protein processing and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions. This represents major progress in characterization of the barley N-glycoproteome, since only four of these sites were previously described. Overall, these findings considerably advance knowledge of the plant protein secretion system in general and emphasize the versatility of the aleurone layer as a model system for studying plant protein secretion.
Collapse
Affiliation(s)
- Gregorio Barba-Espín
- Agricultural and Environmental Proteomics , Department of Systems Biology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | | | | |
Collapse
|