1
|
Hu Y, Jiang B, Weng Y, Sui Z, Zhao B, Chen Y, Liu L, Wu Q, Liang Z, Zhang L, Zhang Y. Bis(zinc(II)-dipicolylamine)-functionalized sub-2 μm core-shell microspheres for the analysis of N-phosphoproteome. Nat Commun 2020; 11:6226. [PMID: 33277485 PMCID: PMC7718886 DOI: 10.1038/s41467-020-20026-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/03/2020] [Indexed: 01/23/2023] Open
Abstract
Protein N-phosphorylation plays a critical role in central metabolism and two/multicomponent signaling of prokaryotes. However, the current enrichment methods for O-phosphopeptides are not preferred for N-phosphopeptides due to the intrinsic lability of P-N bond under acidic conditions. Therefore, the effective N-phosphoproteome analysis remains challenging. Herein, bis(zinc(II)-dipicolylamine)-functionalized sub-2 μm core-shell silica microspheres (SiO2@DpaZn) are tailored for rapid and effective N-phosphopeptides enrichment. Due to the coordination of phosphate groups to Zn(II), N-phosphopeptides can be effectively captured under neutral conditions. Moreover, the method is successfully applied to an E.coli and HeLa N-phosphoproteome study. These results further broaden the range of methods for the discovery of N-phosphoproteins with significant biological functions. N-phosphorylation plays a critical role in central metabolism and signaling processes, however, enrichment methods for N-phosphopeptides are limited by the P-N bond lability. Here, the authors report the synthesis and use of silica microspheres functionalized with bis(zinc(II)-dipicolylamine) in N-phosphopeptides effective enrichment.
Collapse
Affiliation(s)
- Yechen Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Bo Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| | - Yejing Weng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yuanbo Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lukuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiong Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| |
Collapse
|
2
|
Verheggen K, Raeder H, Berven FS, Martens L, Barsnes H, Vaudel M. Anatomy and evolution of database search engines-a central component of mass spectrometry based proteomic workflows. MASS SPECTROMETRY REVIEWS 2020; 39:292-306. [PMID: 28902424 DOI: 10.1002/mas.21543] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Sequence database search engines are bioinformatics algorithms that identify peptides from tandem mass spectra using a reference protein sequence database. Two decades of development, notably driven by advances in mass spectrometry, have provided scientists with more than 30 published search engines, each with its own properties. In this review, we present the common paradigm behind the different implementations, and its limitations for modern mass spectrometry datasets. We also detail how the search engines attempt to alleviate these limitations, and provide an overview of the different software frameworks available to the researcher. Finally, we highlight alternative approaches for the identification of proteomic mass spectrometry datasets, either as a replacement for, or as a complement to, sequence database search engines.
Collapse
Affiliation(s)
- Kenneth Verheggen
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Helge Raeder
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Frode S Berven
- Proteomics Unit, Department of Biomedicine, University of Bergen, Norway
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Harald Barsnes
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
- Proteomics Unit, Department of Biomedicine, University of Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Marc Vaudel
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
- Proteomics Unit, Department of Biomedicine, University of Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
Hentschker C, Maaß S, Junker S, Hecker M, Hammerschmidt S, Otto A, Becher D. Comprehensive Spectral Library from the Pathogenic Bacterium Streptococcus pneumoniae with Focus on Phosphoproteins. J Proteome Res 2020; 19:1435-1446. [DOI: 10.1021/acs.jproteome.9b00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christian Hentschker
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sabryna Junker
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Michael Hecker
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Andreas Otto
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| |
Collapse
|
4
|
Schumacher FR, Delamarre L, Jhunjhunwala S, Modrusan Z, Phung QT, Elias JE, Lill JR. Building proteomic tool boxes to monitor MHC class I and class II peptides. Proteomics 2017; 17. [PMID: 27928884 DOI: 10.1002/pmic.201600061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/13/2016] [Accepted: 11/25/2016] [Indexed: 01/22/2023]
Abstract
Major histocompatibility complex Class I (MHCI) and Class II (MHCII) presented peptides powerfully modulate T cell immunity and play a vital role in generating effective anti-tumor and anti-viral immune responses in mammals. Characterizing these MHCI or MHCII presented peptides can help generate therapeutic treatments, afford information on T cell mediated biomarkers, provide insight into disease progression, and reduce adverse anti-drug side effects from engineered biotherapeutics. Here, we explore the tools and techniques commonly employed to discover both MHCI- and MHCII-presented peptides. We describe complementary strategies that enhance the characterization of these peptides and the informatics tools employed for both predicting and characterizing MHCI- and MHCII-presented epitopes. The evolution of methodologies for isolating MHC-presented peptides is discussed, as are the mass spectrometric workflows that can be employed for their characterization. We provide a perspective on where this field is headed, and how these tools may be applicable to the discovery and monitoring of epitopes in a variety of scenarios.
Collapse
Affiliation(s)
| | - Lélia Delamarre
- Department of Cancer Immunology, Genentech Inc., San Francisco, CA, USA
| | - Suchit Jhunjhunwala
- Department of Bioinformatics & Computational Biology, Genentech Inc., San Francisco, CA, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., San Francisco, CA, USA
| | - Qui T Phung
- Department of Proteomics and Biological Resources, Genentech Inc., San Francisco, CA, USA
| | - Joshua E Elias
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, San Francisco, CA, USA
| | - Jennie R Lill
- Department of Proteomics & Biological Resources, Genentech Inc., San Francisco, CA, USA
| |
Collapse
|
5
|
Tran TT, Strozynski M, Thiede B. Quantitative phosphoproteome analysis of cisplatin-induced apoptosis in Jurkat T cells. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/12/2017] [Accepted: 04/27/2017] [Indexed: 01/06/2023]
Affiliation(s)
- The Trung Tran
- Department of Biosciences; University of Oslo; Oslo Norway
| | | | - Bernd Thiede
- Department of Biosciences; University of Oslo; Oslo Norway
| |
Collapse
|
6
|
Gruber W, Scheidt T, Aberger F, Huber CG. Understanding cell signaling in cancer stem cells for targeted therapy - can phosphoproteomics help to reveal the secrets? Cell Commun Signal 2017; 15:12. [PMID: 28356110 PMCID: PMC5372284 DOI: 10.1186/s12964-017-0166-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/13/2017] [Indexed: 12/11/2022] Open
Abstract
Background Cancer represents heterogeneous and aberrantly proliferative manifestations composed of (epi)genetically and phenotypically distinct cells with a common clonal origin. Cancer stem cells (CSC) make up a rare subpopulation with the remarkable capacity to initiate, propagate and spread a malignant disease. Furthermore, CSC show increased therapy resistance, thereby contributing to disease relapse. Elimination of CSC, therefore, is a crucial aim to design efficacious treatments for long-term survival of cancer patients. In this article, we highlight the nature of CSC and propose that phosphoproteomics based on unbiased high-performance liquid chromatography-mass spectrometry provides a powerful tool to decipher the molecular CSC programs. Detailed knowledge about the regulation of signaling processes in CSC is a prerequisite for the development of patient-tailored multi-modal treatments including the elimination of rare CSC. Main body Phosphorylation is a crucial post-translational modification regulating a plethora of both intra- and intercellular communication processes in normal and malignant cells. Small-molecule targeting of kinases has proven successful in the therapy, but the high rates of relapse and failure to stem malignant spread suggest that these kinase inhibitors largely spare CSC. Studying the kinetics of global phosphorylation patterns in an unbiased manner is, therefore, required to improve strategies and successful treatments within multi-modal therapeutic regimens by targeting the malignant behavior of CSC. The phosphoproteome comprises all phosphoproteins within a cell population that can be analyzed by phosphoproteomics, allowing the investigation of thousands of phosphorylation events. One major aspect is the perception of events underlying the activation and deactivation of kinases and phosphatases in oncogenic signaling pathways. Thus, not only can this tool be harnessed to better understand cellular processes such as those controlling CSC, but also applied to identify novel drug targets for targeted anti-CSC therapy. Conclusion State-of-the-art phosphoproteomics approaches focusing on single cell analysis have the potential to better understand oncogenic signaling in heterogeneous cell populations including rare, yet highly malignant CSC. By eliminating the influence of heterogeneity of populations, single-cell studies will reveal novel insights also into the inter- and intratumoral communication processes controlling malignant CSC and disease progression, laying the basis for improved rational combination treatments.
Collapse
Affiliation(s)
- Wolfgang Gruber
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Tamara Scheidt
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Fritz Aberger
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.
| | - Christian G Huber
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.
| |
Collapse
|
7
|
Leitner A, Sakeye M, Zimmerli CE, Smått JH. Insights into chemoselectivity principles in metal oxide affinity chromatography using tailored nanocast metal oxide microspheres and mass spectrometry-based phosphoproteomics. Analyst 2017; 142:1993-2003. [DOI: 10.1039/c7an00570a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Custom-made nanocast metal oxide materials provide new insights into the mechanisms of metal oxide affinity chromatography, a method widely used to study proteome-wide protein phosphorylation.
Collapse
Affiliation(s)
- Alexander Leitner
- Department of Biology
- Institute of Molecular Systems Biology
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Motolani Sakeye
- Laboratory of Physical Chemistry and Center of Functional Materials
- Åbo Akademi University
- 20500 Turku
- Finland
| | | | - Jan-Henrik Smått
- Laboratory of Physical Chemistry and Center of Functional Materials
- Åbo Akademi University
- 20500 Turku
- Finland
| |
Collapse
|
8
|
Solari FA, Dell'Aica M, Sickmann A, Zahedi RP. Why phosphoproteomics is still a challenge. MOLECULAR BIOSYSTEMS 2016; 11:1487-93. [PMID: 25800119 DOI: 10.1039/c5mb00024f] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite continuous improvements phosphoproteomics still faces challenges that are often neglected, e.g. partially poor recovery of phosphopeptide enrichment, assessment of phosphorylation stoichiometry, label-free quantification, poor behavior during chromatography, and general limitations of peptide-centric proteomics. Here we critically discuss current limitations that need consideration in both qualitative and quantitative studies.
Collapse
Affiliation(s)
- Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany.
| | | | | | | |
Collapse
|
9
|
Hoque A, Hossain MI, Ameen SS, Ang CS, Williamson N, Ng DCH, Chueh AC, Roulston C, Cheng HC. A beacon of hope in stroke therapy-Blockade of pathologically activated cellular events in excitotoxic neuronal death as potential neuroprotective strategies. Pharmacol Ther 2016; 160:159-79. [PMID: 26899498 DOI: 10.1016/j.pharmthera.2016.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excitotoxicity, a pathological process caused by over-stimulation of ionotropic glutamate receptors, is a major cause of neuronal loss in acute and chronic neurological conditions such as ischaemic stroke, Alzheimer's and Huntington's diseases. Effective neuroprotective drugs to reduce excitotoxic neuronal loss in patients suffering from these neurological conditions are urgently needed. One avenue to achieve this goal is to clearly define the intracellular events mediating the neurotoxic signals originating from the over-stimulated glutamate receptors in neurons. In this review, we first focus on the key cellular events directing neuronal death but not involved in normal physiological processes in the neurotoxic signalling pathways. These events, referred to as pathologically activated events, are potential targets for the development of neuroprotectant therapeutics. Inhibitors blocking some of the known pathologically activated cellular events have been proven to be effective in reducing stroke-induced brain damage in animal models. Notable examples are inhibitors suppressing the ion channel activity of neurotoxic glutamate receptors and those disrupting interactions of specific cellular proteins occurring only in neurons undergoing excitotoxic cell death. Among them, Tat-NR2B9c and memantine are clinically effective in reducing brain damage caused by some acute and chronic neurological conditions. Our second focus is evaluation of the suitability of the other inhibitors for use as neuroprotective therapeutics. We also discuss the experimental approaches suitable for bridging our knowledge gap in our current understanding of the excitotoxic signalling mechanism in neurons and discovery of new pathologically activated cellular events as potential targets for neuroprotection.
Collapse
Affiliation(s)
- Ashfaqul Hoque
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - M Iqbal Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - S Sadia Ameen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ching-Seng Ang
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Dominic C H Ng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Anderly C Chueh
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Carli Roulston
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
10
|
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Vaudel M, Verheggen K, Csordas A, Raeder H, Berven FS, Martens L, Vizcaíno JA, Barsnes H. Exploring the potential of public proteomics data. Proteomics 2016; 16:214-25. [PMID: 26449181 PMCID: PMC4738454 DOI: 10.1002/pmic.201500295] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/25/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
Abstract
In a global effort for scientific transparency, it has become feasible and good practice to share experimental data supporting novel findings. Consequently, the amount of publicly available MS-based proteomics data has grown substantially in recent years. With some notable exceptions, this extensive material has however largely been left untouched. The time has now come for the proteomics community to utilize this potential gold mine for new discoveries, and uncover its untapped potential. In this review, we provide a brief history of the sharing of proteomics data, showing ways in which publicly available proteomics data are already being (re-)used, and outline potential future opportunities based on four different usage types: use, reuse, reprocess, and repurpose. We thus aim to assist the proteomics community in stepping up to the challenge, and to make the most of the rapidly increasing amount of public proteomics data.
Collapse
Affiliation(s)
- Marc Vaudel
- Proteomics Unit, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Kenneth Verheggen
- Medical Biotechnology Center, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Attila Csordas
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Helge Raeder
- Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Frode S Berven
- Proteomics Unit, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, KG Jebsen Centre for Multiple Sclerosis Research, University of Bergen, Bergen, Norway
| | - Lennart Martens
- Medical Biotechnology Center, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Juan A Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Harald Barsnes
- Proteomics Unit, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Database Search Engines: Paradigms, Challenges and Solutions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:147-156. [PMID: 27975215 DOI: 10.1007/978-3-319-41448-5_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The first step in identifying proteins from mass spectrometry based shotgun proteomics data is to infer peptides from tandem mass spectra, a task generally achieved using database search engines. In this chapter, the basic principles of database search engines are introduced with a focus on open source software, and the use of database search engines is demonstrated using the freely available SearchGUI interface. This chapter also discusses how to tackle general issues related to sequence database searching and shows how to minimize their impact.
Collapse
|
13
|
Abstract
The comprehensive study of the phosphoproteome is heavily dependent on appropriate enrichment strategies that are most often, but not exclusively, carried out on the peptide level. In this chapter, I give an overview of the most widely used techniques. In addition to dedicated antibodies, phosphopeptides are enriched by their selective interaction with metals in the form of chelated metal ions or metal oxides. The negative charge of the phosphate group is also exploited in a variety of chromatographic fractionation methods that include different types of ion exchange chromatography, hydrophilic interaction chromatography (HILIC), and electrostatic repulsion HILIC (ERLIC) chromatography. Selected examples from the literature will demonstrate how a combination of these techniques with current high-performance mass spectrometry enables the identification of thousands of phosphorylation sites from various sample types.
Collapse
Affiliation(s)
- Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Gonczarowska-Jorge H, Dell'Aica M, Dickhut C, Zahedi RP. Variable Digestion Strategies for Phosphoproteomics Analysis. Methods Mol Biol 2016; 1355:225-239. [PMID: 26584929 DOI: 10.1007/978-1-4939-3049-4_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, mass spectrometry-based phosphoproteomics has propelled our knowledge about the regulation of cellular pathways. Nevertheless, typically applied bottom-up strategies have several limitations. Trypsin, the preferentially used proteolytic enzyme shows impaired cleavage efficiency in the vicinity of phosphorylation sites. Moreover, depending on the frequency and distribution of tryptic cleavage sites (Arg/Lys), generated peptides can be either too short or too long for confident identification using standard LC-MS approaches. To overcome these limitations, we introduce an alternative and simple approach based on the usage of the nonspecific serine protease subtilisin, which enables a fast and reproducible digestion and provides access to "hidden" areas of the proteome. Thus, in a single LC-MS experiment >1800 phosphopeptides were confidently identified and localized from 125 μg of HeLa digest, compared to >2100 sites after tryptic digestion. While the overlap was less than 20 %, subtilisin allowed the identification of many phosphorylation sites that are theoretically not accessible via tryptic digestion, thus considerably increasing the coverage of the phosphoproteome.
Collapse
Affiliation(s)
- Humberto Gonczarowska-Jorge
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- CAPES Foundation, Ministry of Education of Brazil, Caixa Postal 250, Brasília - DF, 70040-020, Brazil
| | - Margherita Dell'Aica
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Clarissa Dickhut
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany.
| |
Collapse
|
15
|
Quantitation of protein post-translational modifications using isobaric tandem mass tags. Bioanalysis 2015; 7:383-400. [PMID: 25697195 DOI: 10.4155/bio.14.296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins are known to modulate many cellular processes and their qualitative and quantitative evaluation is fundamental for understanding the mechanisms of biological events. Over the past decade, improvements in sample preparation techniques and enrichment strategies, the development of quantitative labeling strategies, the launch of a new generation of mass spectrometers and the creation of bioinformatics tools for the interrogation of ever larger datasets has established MS-based quantitative proteomics as a powerful workflow for global proteomics, PTM analysis and the elucidation of key biological mechanisms. With the advantage of their multiplexing capacity and the flexibility of an ever-growing family of different peptide-reactive groups, isobaric tandem mass tags facilitate quantitative proteomics and PTM experiments and enable higher sample throughput. In this review, we focus on the technical concept and utility of the isobaric tandem mass tag labeling approach to PTM analysis, including phosphorylation, glycosylation and S-nitrosylation.
Collapse
|
16
|
Abstract
Protein phosphorylation is a ubiquitous posttranslational modification, which is heavily involved in signal transduction. Misregulation of protein phosphorylation is often associated with a decrease in cell viability and complex diseases such as cancer. The dynamic and low abundant nature of phosphorylated proteins makes studying phosphoproteome a challenging task. In this review, we summarize state of the art proteomic techniques to study and quantify peptide phosphorylation in biological systems and discuss their limitations. Due to its short-lived nature, the phosphorylation event cannot be precisely traced in a heterogonous cell population, which highlights the importance of analyzing phosphorylation events at the single cell level. Mainly, we focus on the methodical and instrumental developments in proteomics and nanotechnology, which will help to build more accurate and robust systems for the feasibility of phosphorylation analysis at the single cell level. We propose that an automated and miniaturized construction of analytical systems holds the key to the future of phosphoproteomics; therefore, we highlight the benchmark studies in this direction. Having advanced and automated microfluidic chip LC systems will allow us to analyze single-cell phosphoproteomics and quantitatively compare it with others. The progress in the microfluidic chip LC systems and feasibility of the single-cell phosphoproteomics will be beneficial for early diagnosis and detection of the treatment response of many crucial diseases.
Collapse
Affiliation(s)
- Ayse Nur Polat
- Department of Molecular Biology and Genetics, Science Faculty, Koç University, Istanbul, Turkey.
| | | |
Collapse
|
17
|
Pagel O, Loroch S, Sickmann A, Zahedi RP. Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev Proteomics 2015; 12:235-53. [PMID: 25955281 PMCID: PMC4487610 DOI: 10.1586/14789450.2015.1042867] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry-based proteomics has considerably extended our knowledge about the occurrence and dynamics of protein post-translational modifications (PTMs). So far, quantitative proteomics has been mainly used to study PTM regulation in cell culture models, providing new insights into the role of aberrant PTM patterns in human disease. However, continuous technological and methodical developments have paved the way for an increasing number of PTM-specific proteomic studies using clinical samples, often limited in sample amount. Thus, quantitative proteomics holds a great potential to discover, validate and accurately quantify biomarkers in body fluids and primary tissues. A major effort will be to improve the complete integration of robust but sensitive proteomics technology to clinical environments. Here, we discuss PTMs that are relevant for clinical research, with a focus on phosphorylation, glycosylation and proteolytic cleavage; furthermore, we give an overview on the current developments and novel findings in mass spectrometry-based PTM research.
Collapse
Affiliation(s)
- Oliver Pagel
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| | | | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| |
Collapse
|
18
|
Loroch S, Schommartz T, Brune W, Zahedi RP, Sickmann A. Multidimensional electrostatic repulsion–hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:460-8. [DOI: 10.1016/j.bbapap.2015.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 11/29/2022]
|
19
|
Ni F, Fu C, Gao X, Liu Y, Xu P, Liu L, Lv Y, Fu S, Sun Y, Han D, Li Y, Zhao Y. N-phosphoryl amino acid models for P-N bonds in prebiotic chemical evolution. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5321-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Silva-Sanchez C, Li H, Chen S. Recent advances and challenges in plant phosphoproteomics. Proteomics 2015; 15:1127-41. [PMID: 25429768 DOI: 10.1002/pmic.201400410] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/29/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Plants are sessile organisms that need to respond to environmental changes quickly and efficiently. They can accomplish this by triggering specialized signaling pathways often mediated by protein phosphorylation and dephosphorylation. Phosphorylation is a fast response that can switch on or off a myriad of biological pathways and processes. Proteomics and MS are the main tools employed in the study of protein phosphorylation. Advances in the technologies allow simultaneous identification and quantification of thousands of phosphopeptides and proteins that are essential to understanding the sophisticated biological systems and regulations. In this review, we summarize the advances in phosphopeptide enrichment and quantitation, MS for phosphorylation site mapping and new data acquisition methods, databases and informatics, interpretation of biological insights and crosstalk with other PTMs, as well as future directions and challenges in the field of phosphoproteomics.
Collapse
Affiliation(s)
- Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
21
|
Loroch S, Zahedi RP, Sickmann A. Highly Sensitive Phosphoproteomics by Tailoring Solid-Phase Extraction to Electrostatic Repulsion-Hydrophilic Interaction Chromatography. Anal Chem 2015; 87:1596-604. [DOI: 10.1021/ac502708m] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften−ISAS−e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| | - René Peiman Zahedi
- Leibniz-Institut für Analytische Wissenschaften−ISAS−e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften−ISAS−e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
- School of Natural & Computing Sciences, University of Aberdeen, Meston Building, Meston Walk, Old Aberdeen AB24 3UE, United Kingdom
- Medizinische
Fakultät, Ruhr-Universität Bochum, Universitätsstraße
150, 44801 Bochum, Germany
| |
Collapse
|
22
|
Li J, Silva-Sanchez C, Zhang T, Chen S, Li H. Phosphoproteomics technologies and applications in plant biology research. FRONTIERS IN PLANT SCIENCE 2015; 6:430. [PMID: 26136758 PMCID: PMC4468387 DOI: 10.3389/fpls.2015.00430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
Protein phosphorylation has long been recognized as an essential mechanism to regulate many important processes of plant life. However, studies on phosphorylation mediated signaling events in plants are challenged with low stoichiometry and dynamic nature of phosphorylated proteins. Significant advances in mass spectrometry based phosphoproteomics have taken place in recent decade, including phosphoprotein/phosphopeptide enrichment, detection and quantification, and phosphorylation site localization. This review describes a variety of separation and enrichment methods for phosphoproteins and phosphopeptides, the applications of technological innovations in plant phosphoproteomics, and highlights significant achievement of phosphoproteomics in the areas of plant signal transduction, growth and development.
Collapse
Affiliation(s)
- Jinna Li
- College of Life Sciences, Heilongjiang UniversityHarbin, China
| | - Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Tong Zhang
- Plant Molecular and Cellular Biology Program, Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
| | - Sixue Chen
- College of Life Sciences, Heilongjiang UniversityHarbin, China
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
| | - Haiying Li
- College of Life Sciences, Heilongjiang UniversityHarbin, China
- *Correspondence: Haiying Li, College of Life Sciences, Heilongjiang University, 74 Xuefu Rd, Harbin 150080, China
| |
Collapse
|
23
|
Abstract
We have come a long way in the 55 years since Edmond Fischer and the late Edwin Krebs discovered that the activity of glycogen phosphorylase is regulated by reversible protein phosphorylation. Many of the fundamental molecular mechanisms that operate in biological signaling have since been characterized and the vast web of interconnected pathways that make up the cellular signaling network has been mapped in considerable detail. Nonetheless, it is important to consider how fast this field is still moving and the issues at the current boundaries of our understanding. One must also appreciate what experimental strategies have allowed us to attain our present level of knowledge. We summarize here some key issues (both conceptual and methodological), raise unresolved questions, discuss potential pitfalls, and highlight areas in which our understanding is still rudimentary. We hope these wide-ranging ruminations will be useful to investigators who carry studies of signal transduction forward during the rest of the 21st century.
Collapse
|
24
|
Truman AW, Kristjansdottir K, Wolfgeher D, Ricco N, Mayampurath A, Volchenboum SL, Clotet J, Kron SJ. Quantitative proteomics of the yeast Hsp70/Hsp90 interactomes during DNA damage reveal chaperone-dependent regulation of ribonucleotide reductase. J Proteomics 2014; 112:285-300. [PMID: 25452130 DOI: 10.1016/j.jprot.2014.09.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/05/2014] [Accepted: 09/27/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED The highly conserved molecular chaperones Hsp90 and Hsp70 are indispensible for folding and maturation of a significant fraction of the proteome, including many proteins involved in signal transduction and stress response. To examine the dynamics of chaperone-client interactions after DNA damage, we applied quantitative affinity-purification mass spectrometry (AP-MS) proteomics to characterize interactomes of the yeast Hsp70 isoform Ssa1 and Hsp90 isoform Hsp82 before and after exposure to methyl methanesulfonate. Of 256 proteins identified and quantified via (16)O(/18)O labeling and LC-MS/MS, 142 are novel Hsp70/90 interactors. Nearly all interactions remained unchanged or decreased after DNA damage, but 5 proteins increased interactions with Ssa1 and/or Hsp82, including the ribonucleotide reductase (RNR) subunit Rnr4. Inhibiting Hsp70 or 90 chaperone activity destabilized Rnr4 in yeast and its vertebrate homolog hRMM2 in breast cancer cells. In turn, pre-treatment of cancer cells with chaperone inhibitors sensitized cells to the RNR inhibitor gemcitabine, suggesting a novel chemotherapy strategy. All MS data have been deposited in the ProteomeXchange with identifier PXD001284. BIOLOGICAL SIGNIFICANCE This study provides the dynamic interactome of the yeast Hsp70 and Hsp90 under DNA damage which suggest key roles for the chaperones in a variety of signaling cascades. Importantly, the cancer drug target ribonucleotide reductase was shown to be a client of Hsp70 and Hsp90 in both yeast and breast cancer cells. As such, this study highlights the potential of a novel cancer therapeutic strategy that exploits the synergy of chaperone and ribonucleotide reductase inhibitors.
Collapse
Affiliation(s)
- Andrew W Truman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | - Donald Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Natalia Ricco
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Catalunya, Spain
| | - Anoop Mayampurath
- Computation Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Samuel L Volchenboum
- Computation Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Josep Clotet
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Catalunya, Spain
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
Venne AS, Zahedi RP. The potential of fractional diagonal chromatography strategies for the enrichment of post-translational modifications. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Ye X, Li L. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells. Electrophoresis 2014; 35:3479-86. [PMID: 24888630 DOI: 10.1002/elps.201300586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 05/02/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022]
Abstract
A new method of combining macroporous RP (mRP) protein fractionation with RPLC peptide separation MS/MS is reported for profiling the phosphoproteome of a complex sample. In this method, an mRP-C18 column was used to fractionate the proteins from a whole cell lysate of a breast cancer cell line, MDA-MB-231, into 38 fractions. Each fraction was subjected to tryptic digestion, sequential phosphopeptide enrichment by immobilized metal ion affinity chromatography and titanium dioxide (TiO2 ), followed by capillary RPLC-MS/MS analysis. For comparison, the conventional method of using strong cation exchange RPLC separation of peptides combined with MS/MS was also used for analyzing the phosphoproteome. Replicate experiments by the mRP-RPLC method identified 1585 distinct phosphoproteins with 4519 phosphopeptides, compared to 1585 phosphoproteins with 4297 phosphopeptides by strong cation exchange RPLC, with a total of 1947 phosphoproteins and 6278 phosphopeptides identified from the combined results. While the two methods have similar ability in the identification of the phosphoproteome, they produce complementary information. The phosphoproteins identified in this study, including 67 novel phosphorylation sites from 56 breast cancer related proteins, can serve as the entry point for future validation with biological implications in breast cancer. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000948 and DOI 10.6019/PXD000948.
Collapse
Affiliation(s)
- Xiaoxia Ye
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
27
|
Dickhut C, Feldmann I, Lambert J, Zahedi RP. Impact of digestion conditions on phosphoproteomics. J Proteome Res 2014; 13:2761-70. [PMID: 24724590 DOI: 10.1021/pr401181y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the past few years, the focus of phosphoproteomics has shifted from merely qualitative to quantitative and targeted studies. Tryptic digestion is a critical step that directly affects quantification and that can be impaired by phosphorylation. Therefore, we systematically characterized the digestion efficiency of 19 nonmodified and phosphorylated model peptides. Whereas we quantified a strong reduction of tryptic cleavage within phosphorylated PKA motifs (R)-R-X-pS/pT and also R-X-X-pT sequences, (R)-R-X-pY sequences were almost unaffected. Structural prediction implied the formation of salt bridges between R/K cleavage sites and phosphoamino acids pS/pT as the main reason for impaired tryptic digestion. We evaluated different conditions to optimize the digestion of such "resistant" phosphopeptides, yielding a substantial improvement of digestion efficiency. We performed a quantitative large-scale phosphoproteomic analysis of human platelets to validate our findings in a complex biological sample. Here, increasing trypsin concentrations up to a trypsin to peptide ratio of 1:10 led to a significant gain (i) in the overall number of phosphorylation sites (up to 9%) and (ii) in the intensities of individual phosphopeptides, thereby improving the sensitivity of phosphopeptide quantification. Still, for certain sequences, the negative impact of phosphorylation on digestion efficiency will further complicate the analysis of phosphorylation stoichiometry.
Collapse
Affiliation(s)
- Clarissa Dickhut
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund 44227, Germany
| | | | | | | |
Collapse
|
28
|
Venne AS, Kollipara L, Zahedi RP. The next level of complexity: Crosstalk of posttranslational modifications. Proteomics 2014; 14:513-24. [DOI: 10.1002/pmic.201300344] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/06/2013] [Accepted: 11/21/2013] [Indexed: 12/22/2022]
Affiliation(s)
- A. Saskia Venne
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V; Dortmund Germany
| | | | - René P. Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V; Dortmund Germany
| |
Collapse
|
29
|
Dickhut C, Radau S, Zahedi RP. Fast, efficient, and quality-controlled phosphopeptide enrichment from minute sample amounts using titanium dioxide. Methods Mol Biol 2014; 1156:417-30. [PMID: 24792005 DOI: 10.1007/978-1-4939-0685-7_28] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bottom-up mass spectrometry (MS) is still the method of choice for analyzing protein phosphorylation. However, the low stoichiometry of phosphorylation, especially in highly complex samples, renders the specific enrichment of phosphopeptides prior to analysis inevitable. In recent years, specific phosphopeptide enrichment strategies combined with high-performance liquid chromatography (HPLC)-MS (LC-MS) provided researchers deeper insights into the phosphorylation networks of biological systems.Here, we describe two protocols for the enrichment of phosphopeptides from biological samples using titanium dioxide (TiO2) resins, enabling the handling of small sample amounts (<20 μg of protein) as well as larger sample amounts (up to the milligram range), depending on the scientific issue to be solved.Furthermore, we imply quality control steps during sample preparation to ensure the reproducibility and reliability of the phosphoproteomic findings.
Collapse
Affiliation(s)
- Clarissa Dickhut
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | | | | |
Collapse
|
30
|
Rao R, Xu D, Thelen JJ, Miernyk JA. Circles within circles: crosstalk between protein Ser/Thr/Tyr-phosphorylation and Met oxidation. BMC Bioinformatics 2013; 14 Suppl 14:S14. [PMID: 24267725 PMCID: PMC3851202 DOI: 10.1186/1471-2105-14-s14-s14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Reversible posttranslational protein modifications such as phosphorylation of Ser/Thr/Tyr and Met oxidation are critical for both metabolic regulation and cellular signalling. Although these modifications are typically studied individually, herein we describe the potential for cross-talk and hierarchical regulation. RESULTS The proximity of Met to Ser/Thr/Tyr within the proteome has not previously been addressed. In order to consider the possibility of a generalized interaction, we performed a trans-kingdom sequence analysis of known phosphorylation sites in proteins from bacteria, fungi, plants, and animals. The proportion of phosphorylation sites that include a Met within a 13-residue window centered upon Ser/Thr/Tyr is significantly less than the occurrence of Met in proximity to all Ser/Thr/Tyr residues. Met residues are present at all positions (-6 to +6, inclusive) within the 13-residue window that we have considered. Detailed analysis of sequences from eight disparate plant taxa revealed that many conserved phosphorylation sites have a Met residue in the proximity. Results from GO enrichment analysis indicated that the potential for phosphorylation and Met oxidation crosstalk is most prevalent in kinases and proteins involved in signalling. CONCLUSION The large proportion of known phosphorylation sites with Met in the proximity fulfils the necessary condition for cross-talk. Kinases/signalling proteins are enriched for Met around phosphorylation sites. These proteins/sites are likely candidates for cross-talk between oxidative signalling and reversible phosphorylation.
Collapse
|