1
|
Ma X, He Y, Lv D, Chen X, Hong Z, Chai Y, Liu Y. Optimization of metabolomics pretreatment method of cholangiocarcinoma cells based on ultrahigh performance liquid chromatography coupled with mass spectrometry. J Pharm Biomed Anal 2025; 252:116508. [PMID: 39426275 DOI: 10.1016/j.jpba.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
Metabolomics intends to maximize the quantity of available metabolites for the global metabolome, which largely depends on sample pretreatment protocols. However, there are few studies that comprehensively examined the effects of extraction and reconstitution solvents on metabolome coverage of adherent mammalian cells. In this study, the human cholangiocarcinoma TFK-1 cells were chosen as a cell model, and eight extraction solvents and five reconstitution solvents were used for the pretreatment based on ultrahigh performance liquid chromatography coupled with mass spectrometry (UPLC/MS). The coverage, reproducibility, and stability of the data were norms to evaluate the effectiveness of different extraction solvents and reconstitution solvents. Based on the number of metabolites, the mean Euclidean distance (EDMEAN) in the principal component analysis (PCA) 3D score plots and the relative standard deviation (RSD) distribution of metabolites, it was demonstrated that MeOH-CHCl3-H2O (8:1:1, v/v/v) was the optimal extraction solvent and MeOH-H2O (1:1, v/v) or H2O was superior to other reconstitution solvents for RP column analysis, and the extraction solvent MeOH-ACN-H2O (2:2:1, v/v/v) and the reconstitution solvents ACN-H2O (4:1, v/v) or MeOH-H2O (1:1, v/v) provide the best performance for HILIC column analysis. The optimized pretreatment methods explored in this study expand the coverage of polar and non-polar metabolites and improve the reproducibility and stability of the metabolic data, which can be applied to UPLC/MS-based global metabolomics study on cholangiocarcinoma cells, potentially providing better extraction solvents and reconstitution solvents for other adherent mammalian cells with similar chemical and physical properties.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, China
| | - Yongping He
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Department of Pharmacy, Chongzuo People's Hospital, Chongzuo 532200, China
| | - Diya Lv
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Xiaofei Chen
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China
| | - Zhanying Hong
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| | - Yifeng Chai
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| | - Yue Liu
- Department of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| |
Collapse
|
2
|
Lu X, Dou P, Xie X, Wang X, Liu X, Hua R, Xu G. Development of a novel analytical method for inflammation and immunity-related metabolites in serum based on liquid chromatography tandem mass spectrometry. Talanta 2021; 234:122631. [PMID: 34364440 DOI: 10.1016/j.talanta.2021.122631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023]
Abstract
Some metabolites have been found to play key roles in inflammation and immunity events that are associated with diseases such as cancer, diabetes and cytokine release syndrome. Characterization upon the inflammation and immunity-related metabolites (IIMs) will be helpful to the assessment of related pathological states. Although these metabolites have been partially reported in previous studies, the methods for specific measurement of them remain lacking. In the present study, a liquid chromatography - mass spectrometry based method was developed for the targeted analyses of 45 IIMs including amino acids, organic acids, phosphatidylcholines (PCs), polyunsaturated fatty acids and hormones selected based on the literature knowledge. Direct extraction with dansyl-chloride in acetonitrile was proved to be the most efficient and time-saving strategy, in which precipitation, extraction and derivatization were integrated. IIMs derivatized for 4 min and quenched for 2 min revealed the most comprehensive abundance. Based on the defined conditions, all the IIMs had a low limit of detection smaller than 1 ng/mL with the linear range greater than three orders of magnitude. The relative standard derivations of intra-day and inter-day precisions were ranged from 2.2% to 13.4% and 1.7% to 19.5%, respectively. The recovery rates and accuracy in low concentration were 98.9% ± 5.6% and 106.7% ± 11.6%, in medium concentration were 97.1% ± 6.8% and 106.9% ± 9.5%, and in high concentration were 98.4% ± 8.9% and 98.1% ± 8.1%, respectively. Matrix effect and stability were ranged from -37.8% to 35.6% and 2.9% to 14.2%, respectively. To show the usefulness of the method, serum IIMs in hepatitis B virus (HBV) infected patients and healthy subjects were determined and compared. Bile acids, lipoxygenase-mediated lipid mediators and non-enzymatic products showed global increases, whereas most of LysoPCs and cyclooxygenase-mediated prostaglandin D2 decreased in HBV serum samples. This study provided a robust approach for the characterization of IIMs.
Collapse
Affiliation(s)
- Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Peng Dou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoyu Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Rui Hua
- Department of Hepatology, First Hospital, Jilin University, Changchun, Jilin, 130021, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
3
|
Xu T, Li H, Feng D, Dou P, Shi X, Hu C, Xu G. Lipid Profiling of 20 Mammalian Cells by Capillary Microsampling Combined with High-Resolution Spectral Stitching Nanoelectrospray Ionization Direct-Infusion Mass Spectrometry. Anal Chem 2021; 93:10031-10038. [PMID: 34270220 DOI: 10.1021/acs.analchem.1c00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Studies of cellular metabolism can provide profound insights into the underlying molecular mechanisms and metabolic function. To date, the majority of cellular metabolism studies based on chromatography-mass spectrometry (MS) require population cells to obtain informative metabolome. These methods are not only time-consuming but also not suitable for amount-limited cell samples such as circulating tumor cells, stem cells, and neurons. Therefore, it is extremely essential to develop analytical methods enabling to detect metabolome from tens of cells in a high-throughput and high-sensitivity way. In this work, a novel platform for rapid and sensitive detection of lipidome in 20 mammalian cells was proposed using capillary microsampling combined with high-resolution spectral stitching nanoelectrospray ionization direct-infusion MS. It can be used to collect cells rapidly and accurately via the capillary microprobe, extract lipids directly in a 96-well plate using a spray solvent, and detect more than 500 lipids covering 19 lipid subclasses within 3 min. This novel platform was successfully applied to study the lipid features of different cancer cell types and subtypes as well as target cells from tissue samples. This study provides a strategy for determining the lipid species with rich information in tens of cells and demonstrates great potential for clinical applications.
Collapse
Affiliation(s)
- Tianrun Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Disheng Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Dou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|