1
|
Pośpiech E, Rudnicka J, Noroozi R, Pisarek-Pacek A, Wysocka B, Masny A, Boroń M, Migacz-Gruszka K, Pruszkowska-Przybylska P, Kobus M, Lisman D, Zielińska G, Cytacka S, Iljin A, Wiktorska JA, Michalczyk M, Kaczka P, Krzysztofik M, Sitek A, Spólnicka M, Ossowski A, Branicki W. DNA methylation at AHRR as a master predictor of smoke exposure and a biomarker for sleep and exercise. Clin Epigenetics 2024; 16:147. [PMID: 39425209 PMCID: PMC11490037 DOI: 10.1186/s13148-024-01757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND DNA methylation profiling may provide a more accurate measure of the smoking status than self-report and may be useful in guiding clinical interventions and forensic investigations. In the current study, blood DNA methylation profiles of nearly 800 Polish individuals were assayed using Illuminia EPIC and the inference of smoking from epigenetic data was explored. In addition, we focused on the role of the AHRR gene as a top marker for smoking and investigated its responsiveness to other lifestyle behaviors. RESULTS We found > 450 significant CpGs associated with cigarette consumption, and overrepresented in various biological functions including cell communication, response to stress, blood vessel development, cell death, and atherosclerosis. The model consisting of cg05575921 in AHRR (p = 4.5 × 10-32) and three additional CpGs (cg09594361, cg21322436 in CNTNAP2 and cg09842685) was able to predict smoking status with a high accuracy of AUC = 0.8 in the test set. Importantly, a gradual increase in the probability of smoking was observed, starting from occasional smokers to regular heavy smokers. Furthermore, former smokers displayed the intermediate DNA methylation profiles compared to current and never smokers, and thus our results indicate the potential reversibility of DNA methylation after smoking cessation. The AHRR played a key role in a predictive analysis, explaining 21.5% of the variation in smoking. In addition, the AHRR methylation was analyzed for association with other modifiable lifestyle factors, and showed significance for sleep and physical activity. We also showed that the epigenetic score for smoking was significantly correlated with most of the epigenetic clocks tested, except for two first-generation clocks. CONCLUSIONS Our study suggests that a more rapid return to never-smoker methylation levels after smoking cessation may be achievable in people who change their lifestyle in terms of physical activity and sleep duration. As cigarette smoking has been implicated in the literature as a leading cause of epigenetic aging and AHRR appears to be modifiable by multiple exogenous factors, it emerges as a promising target for intervention and investment.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland.
| | - Joanna Rudnicka
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Rezvan Noroozi
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Johns Hopkins University School of Medicine, Baltimore, USA
| | - Aleksandra Pisarek-Pacek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Institute of Zoology and Biomedical Research of the Jagiellonian University, Krakow, Poland
| | - Bożena Wysocka
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | | | - Michał Boroń
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | | | | | - Magdalena Kobus
- Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Dagmara Lisman
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Grażyna Zielińska
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Sandra Cytacka
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Aleksandra Iljin
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Lodz, Lodz, Poland
| | | | - Małgorzata Michalczyk
- Department of Sport Nutrition, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Piotr Kaczka
- Department of Sport Nutrition, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michał Krzysztofik
- Institute of Sports Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Aneta Sitek
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | - Andrzej Ossowski
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research of the Jagiellonian University, Krakow, Poland
- Institute of Forensic Research, Krakow, Poland
| |
Collapse
|
2
|
Ji Z, Xing Y, Li J, Feng X, Yang F, Zhu B, Yan J. Male-specific age prediction based on Y-chromosome DNA methylation with blood using pyrosequencing. Forensic Sci Int Genet 2024; 71:103050. [PMID: 38703560 DOI: 10.1016/j.fsigen.2024.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
Age prediction is an important aspect of forensic science that offers valuable insight into identification. In recent years, extensive studies have been conducted on age prediction based on DNA methylation, and numerous studies have demonstrated that DNA methylation is a reliable biomarker for age prediction. However, almost all studies on age prediction based on DNA methylation have focused on age-related CpG sites in autosomes, which are concentrated on single-source DNA samples. Mixed samples, especially male-female mixed samples, are common in forensic casework. The application of Y-STRs and Y-SNPs can provide clues for the genetic typing of male individuals in male-female mixtures, but they cannot provide the age information of male individuals. Studies on Y-chromosome DNA methylation can address this issue. In this study, we identified five age-related CpG sites on the Y chromosome (Y-CpGs) and developed a male-specific age prediction model using pyrosequencing combined with a support vector machine algorithm. The mean absolute deviation of the model was 5.50 years in the training set and 6.74 years in the testing set. When we used a male blood sample to predict age, the deviation between the predicted and chronological age was 1.18 years. Then, we mixed the genomic DNA of the male and a female at ratios of 1:1, 1:5, 1:10, and 1:50, the range of deviation between the predicted and chronological age of the male in the mixture was 1.16-1.74 years. In addition, there was no significant difference between the methylation values of bloodstains and blood in the same sample, which indicates that our model is also suitable for bloodstain samples. Overall, our results show that age prediction using DNA methylation of the Y chromosome has potential applications in forensic science and can be of great help in predicting the age of males in male-female mixtures. Furthermore, this work lays the foundation for future research on age-related applications of Y-CpGs.
Collapse
Affiliation(s)
- Zhimin Ji
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030009, PR China
| | - Yangfeng Xing
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030009, PR China
| | - Junli Li
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030009, PR China
| | - Xiaoxiao Feng
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030009, PR China
| | - Fenglong Yang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030009, PR China.
| | - Bofeng Zhu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030009, PR China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030009, PR China.
| |
Collapse
|
3
|
Ambroa-Conde A, Casares de Cal MA, Gómez-Tato A, Robinson O, Mosquera-Miguel A, de la Puente M, Ruiz-Ramírez J, Phillips C, Lareu MV, Freire-Aradas A. Inference of tobacco and alcohol consumption habits from DNA methylation analysis of blood. Forensic Sci Int Genet 2024; 70:103022. [PMID: 38309257 DOI: 10.1016/j.fsigen.2024.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
DNA methylation has become a biomarker of great interest in the forensic and clinical fields. In criminal investigations, the study of this epigenetic marker has allowed the development of DNA intelligence tools providing information that can be useful for investigators, such as age prediction. Following a similar trend, when the origin of a sample in a criminal scenario is unknown, the inference of an individual's lifestyle such as tobacco use and alcohol consumption could provide relevant information to help in the identification of DNA donors at the crime scene. At the same time, in the clinical domain, prediction of these trends of consumption could allow the identification of people at risk or better identification of the causes of different pathologies. In the present study, DNA methylation data from the UK AIRWAVE study was used to build two binomial logistic models for the inference of smoking and drinking status. A total of 348 individuals (116 non-smokers, 116 former smokers and 116 smokers) plus a total of 237 individuals (79 non-drinkers, 79 moderate drinkers and 79 drinkers) were used for development of tobacco and alcohol consumption prediction models, respectively. The tobacco prediction model was composed of two CpGs (cg05575921 in AHRR and cg01940273) and the alcohol prediction model three CpGs (cg06690548 in SLC7A11, cg0886875 and cg21294714 in MIR4435-2HG), providing correct classifications of 86.49% and 74.26%, respectively. Validation of the models was performed using leave-one-out cross-validation. Additionally, two independent testing sets were also assessed for tobacco and alcohol consumption. Considering that the consumption of these substances could underlie accelerated epigenetic ageing patterns, the effect of these lifestyles on the prediction of age was evaluated. To do that, a quantile regression model based on previous studies was generated, and the potential effect of tobacco and alcohol consumption with the epigenetic age was assessed. The Wilcoxon test was used to evaluate the residuals generated by the model and no significant differences were observed between the categories analyzed.
Collapse
Affiliation(s)
- A Ambroa-Conde
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M A Casares de Cal
- CITMAga (Center for Mathematical Research and Technology of Galicia), University of Santiago de Compostela, Spain
| | - A Gómez-Tato
- CITMAga (Center for Mathematical Research and Technology of Galicia), University of Santiago de Compostela, Spain
| | - O Robinson
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - A Mosquera-Miguel
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M de la Puente
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - J Ruiz-Ramírez
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - C Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - M V Lareu
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain
| | - A Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, Universidade de Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Castagnola MJ, Medina-Paz F, Zapico SC. Uncovering Forensic Evidence: A Path to Age Estimation through DNA Methylation. Int J Mol Sci 2024; 25:4917. [PMID: 38732129 PMCID: PMC11084977 DOI: 10.3390/ijms25094917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Age estimation is a critical aspect of reconstructing a biological profile in forensic sciences. Diverse biochemical processes have been studied in their correlation with age, and the results have driven DNA methylation to the forefront as a promising biomarker. DNA methylation, an epigenetic modification, has been extensively studied in recent years for developing age estimation models in criminalistics and forensic anthropology. Epigenetic clocks, which analyze DNA sites undergoing hypermethylation or hypomethylation as individuals age, have paved the way for improved prediction models. A wide range of biomarkers and methods for DNA methylation analysis have been proposed, achieving different accuracies across samples and cell types. This review extensively explores literature from the past 5 years, showing scientific efforts toward the ultimate goal: applying age prediction models to assist in human identification.
Collapse
Affiliation(s)
- María Josefina Castagnola
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Francisco Medina-Paz
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Sara C. Zapico
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
- Department of Anthropology and Laboratories of Analytical Biology, National Museum of Natural History, MRC 112, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
5
|
Fernandez-Tejero N, Gauthier Q, Cho S, McCord BR. High-resolution melt analysis for the detection of skin/sweat via DNA methylation. Electrophoresis 2023; 44:371-377. [PMID: 36480207 DOI: 10.1002/elps.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The determination of tissue type is important when reconstructing a crime scene as skin cells may indicate innocent contact, whereas other types of cells, such as blood and semen, may indicate foul play. Up to now, there has been no specific DNA methylation-based marker to distinguish skin cell DNA from other body fluids. The goal of this study is to develop a DNA methylation-based assay to detect and identify skin cells collected at forensic crime scenes for use in DNA typing. For this reason, we have utilized a DNA methylation chip array-based genome-wide association study to identify skin-specific DNA methylation markers. DNA obtained from skin along with other body fluids, such as semen, saliva, blood, and vaginal epithelia, were tested using five genes that were identified as sites for potential new epigenetic skin markers. Samples were collected, bisulfite converted, and subjected to real-time polymerase chain reaction (PCR) with high-resolution melt analysis. In our studies, when using WDR11, PON2, and NHSL1 assays with bisulfite-modified PCR, skin/sweat amplicons melted at lower temperatures compared to blood, saliva, semen, and vaginal epithelia. One-way analysis of variance demonstrates that these three skin/sweat markers are significantly different when compared with other body fluids (p < 0.05). These results demonstrate that high-resolution melt analysis is a promising technology to detect and identify skin/sweat DNA from other body fluids.
Collapse
Affiliation(s)
- Nicole Fernandez-Tejero
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Quentin Gauthier
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Sohee Cho
- Institute of Forensic Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Bruce R McCord
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| |
Collapse
|
6
|
Ghemrawi M, Tejero NF, Duncan G, McCord B. Pyrosequencing: Current forensic methodology and future applications-a review. Electrophoresis 2023; 44:298-312. [PMID: 36168852 DOI: 10.1002/elps.202200177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 02/01/2023]
Abstract
The recent development of small, single-amplicon-based benchtop systems for pyrosequencing has opened up a host of novel procedures for applications in forensic science. Pyrosequencing is a sequencing by synthesis technique, based on chemiluminescent inorganic pyrophosphate detection. This review explains the pyrosequencing workflow and illustrates the step-by-step chemistry, followed by a description of the assay design and factors to keep in mind for an exemplary assay. Existing and potential forensic applications are highlighted using this technology. Current applications include identifying species, identifying bodily fluids, and determining smoking status. We also review progress in potential applications for the future, including research on distinguishing monozygotic twins, detecting alcohol and drug abuse, and other phenotypic characteristics such as diet and body mass index. Overall, the versatility of the pyrosequencing technologies renders it a useful tool in forensic genomics.
Collapse
Affiliation(s)
- Mirna Ghemrawi
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Nicole Fernandez Tejero
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - George Duncan
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida, USA
| | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| |
Collapse
|
7
|
Wen D, Shi J, Liu Y, He W, Qu W, Wang C, Xing H, Cao Y, Li J, Zha L. DNA methylation analysis for smoking status prediction in the Chinese population based on the methylation-sensitive single-nucleotide primer extension method. Forensic Sci Int 2022; 339:111412. [DOI: 10.1016/j.forsciint.2022.111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
|
8
|
Developments in forensic DNA analysis. Emerg Top Life Sci 2021; 5:381-393. [PMID: 33792660 PMCID: PMC8457771 DOI: 10.1042/etls20200304] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022]
Abstract
The analysis of DNA from biological evidence recovered in the course of criminal investigations can provide very powerful evidence when a recovered profile matches one found on a DNA database or generated from a suspect. However, when no profile match is found, when the amount of DNA in a sample is too low, or the DNA too degraded to be analysed, traditional STR profiling may be of limited value. The rapidly expanding field of forensic genetics has introduced various novel methodologies that enable the analysis of challenging forensic samples, and that can generate intelligence about the donor of a biological sample. This article reviews some of the most important recent advances in the field, including the application of massively parallel sequencing to the analysis of STRs and other marker types, advancements in DNA mixture interpretation, particularly the use of probabilistic genotyping methods, the profiling of different RNA types for the identification of body fluids, the interrogation of SNP markers for predicting forensically relevant phenotypes, epigenetics and the analysis of DNA methylation to determine tissue type and estimate age, and the emerging field of forensic genetic genealogy. A key challenge will be for researchers to consider carefully how these innovations can be implemented into forensic practice to ensure their potential benefits are maximised.
Collapse
|
9
|
Epigenetic prediction of 17β-estradiol and relationship to trauma-related outcomes in women. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 6:100045. [PMID: 35757356 PMCID: PMC9216622 DOI: 10.1016/j.cpnec.2021.100045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022] Open
Abstract
17β-estradiol (E2) levels in women correlate with multiple neuropsychiatric symptoms, including those that are stress-related. Furthermore, prior work from our group has demonstrated that E2 status influences DNA methylation (DNAm) across the genome. We developed and validated a DNAm-based predictor of E2 (one of four naturally occurring estrogens) using a training set of 183 females and a test set of 79 females from the same traumatized cohort. We showed that predicted E2 levels were highly correlated with measured E2 concentrations in our testing set (r = 0.75, p = 1.8e-15). We further demonstrated that predicted E2 concentrations, in combination with measured values, negatively correlated with current post-traumatic stress disorder (PTSD) (β = −0.38, p = 0.01) and major depressive disorder (MDD) diagnoses (β = −0.45, p = 0.02), as well as a continuous measure of PTSD symptom severity (β = −2.3, p = 0.007) in females. Finally, we tested our predictor in an independent data set (n = 85) also comprised of recently traumatized female subjects to determine if the predictor would generalize to a different population than the one on which it was developed. We found that the correlation between predicted and actual E2 concentrations in the external validation data set was also high (r = 0.48, p = 3.0e-6). While further validation is warranted, a DNAm predictor of E2 concentrations will advance our understanding of hormone-epigenetic interactions. Furthermore, such a DNAm predictor may serve as an epigenetic proxy for E2 concentrations and thus provide an important biomarker to better evaluate the contribution of E2 to current and potentially future psychiatric symptoms in samples for which E2 is not measured. Neuropsychiatric symptoms correlate with estradiol (E2) levels in females. We developed a DNA methylation-based E2 predictor using machine learning approach. Our predictor performed well in an external validation cohort of traumatized women. Predicted E2 concentrations correlated with stress-related phenotypes. Our model may serve as an epigenetic biomarker of E2 status in women.
Collapse
|
10
|
Alghanim H, Balamurugan K, McCord B. Development of DNA methylation markers for sperm, saliva and blood identification using pyrosequencing and qPCR/HRM. Anal Biochem 2020; 611:113933. [PMID: 32891597 DOI: 10.1016/j.ab.2020.113933] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Discrimination of body fluids can provide important information in the investigation of crime scenes. The goal of this project was to identify new sets of tissue specific differentially methylated regions (tDMRs) and develop assays that can be utilized for forensic discrimination of body fluids, in particular sperm, saliva and blood. In this study, a sample set containing semen with sperm, semen without sperm, buccal swabs, saliva (oral fluids), venous blood, menstrual blood, vaginal secretions, and sweat/skin samples were used to develop four assays. Two methods for the analysis of DNA methylation biomarkers were developed in this paper: pyrosequencing and quantitative PCR/high resolution melt (HRM) analysis. Using an epigenome wide association study, two markers, NMUR2 and UBE2U, were found to be specific for sperm, based on the fact that mean DNA methylation levels for semen (containing sperm cells) were significantly lower than mean DNA methylation levels of other body fluids. In addition, one marker (SA-6) was hypermethylated in saliva when compared to other body fluids. The assays developed for NMUR2, UBE2U and SA-6 markers can be applied in forensic tissue identification using both pyrosequencing and HRM analysis. Additionally, a set of CpG sites in the AHRR locus were hypomethylated in blood when compared to other tissues using pyrosequencing. However, this locus was not amenable to HRM analysis. Overall, this work demonstrates the discovery and application of tDMRs for forensic applications.
Collapse
Affiliation(s)
- Hussain Alghanim
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA; General Department of Forensic Science and Criminology, Dubai Police, Dubai, United Arab Emirates
| | - Kuppareddi Balamurugan
- School of Criminal Justice, Forensic Science and Security, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
11
|
Twin Research in the Post-Genomic Era: Dissecting the Pathophysiological Effects of Adversity and the Social Environment. Int J Mol Sci 2020; 21:ijms21093142. [PMID: 32365612 PMCID: PMC7247668 DOI: 10.3390/ijms21093142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/29/2022] Open
Abstract
The role of twins in research is evolving as we move further into the post-genomic era. With the re-definition of what a gene is, it is becoming clear that biological family members who share a specific genetic variant may well not have a similar risk for future disease. This has somewhat invalidated the prior rationale for twin studies. Case co-twin study designs, however, are slowly emerging as the ideal tool to identify both environmentally induced epigenetic marks and epigenetic disease-associated processes. Here, we propose that twin lives are not as identical as commonly assumed and that the case co-twin study design can be used to investigate the effects of the adult social environment. We present the elements in the (social) environment that are likely to affect the epigenome and measures in which twins may diverge. Using data from the German TwinLife registry, we confirm divergence in both the events that occur and the salience for the individual start as early as age 11. Case co-twin studies allow for the exploitation of these divergences, permitting the investigation of the role of not only the adult social environment, but also the salience of an event or environment for the individual, in determining lifelong health trajectories. In cases like social adversity where it is clearly not possible to perform a randomised-controlled trial, we propose that the case co-twin study design is the most rigorous manner with which to investigate epigenetic mechanisms encoding environmental exposure. The role of the case co-twin design will continue to evolve, as we argue that it will permit causal inference from observational data.
Collapse
|
12
|
Butler JM, Willis S. Interpol review of forensic biology and forensic DNA typing 2016-2019. Forensic Sci Int Synerg 2020; 2:352-367. [PMID: 33385135 PMCID: PMC7770417 DOI: 10.1016/j.fsisyn.2019.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022]
Abstract
This review paper covers the forensic-relevant literature in biological sciences from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
|
13
|
Wu DH, Zhu XW, Wen XM, Zhang YY, Ma JC, Yao DM, Zhou JD, Guo H, Wu PF, Zhang XL, Qiu HC, Lin J, Qian J. Hypomethylation of MIR-378 5'-flanking region predicts poor survival in young patients with myelodysplastic syndrome. Mol Genet Genomic Med 2019; 8:e1067. [PMID: 31833222 PMCID: PMC6978398 DOI: 10.1002/mgg3.1067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Previous studies have disclosed up-regulation of MIR-378 in acute myeloid leukemia (AML), and might consequently affect the outcome of the patients. Correspondingly, hypomethylation of MIR-378 was also identified in AML, particularly for FAB-M2 subtype with t(8;21) chromosomal translocation. Nevertheless, the methylation status of MIR-378 has not been illustrated in myelodysplastic syndrome (MDS). Herein we designed to understand the methylation pattern of MIR-378 involved in MDS and clinical interrelation thereof. METHODS Real-time quantitative methylation-specific PCR (RQ-MSP) was performed to evaluate the methylation degree of MIR-378 5'-flanking region on bone marrow mononuclear cells collected from 95 de novo MDS patients. Five gene mutations (IDH1, IDH2, DNMT3A, U2AF1, and SF3B1) were detected by high-resolution melting analysis to further evaluate the clinical relevance of hypomethylation of MIR-378. RESULTS Unmethylated level of MIR-378 5'-flanking region was significantly higher in MDS patients than that in controls (p = .034). Hypomethylated MIR-378 was identified in 20 of 95 (21%) cases with MDS. Male patients appeared to be more frequent to harbor MIR-378 hypomethylation compared to female patients (15/55, 27.3% vs. 4/40, 10.0%, p = .04). There was no significant difference in age, white blood cell counts, platelet counts, hemoglobin concentration, and karyotypes between the patients with and without MIR-378-hypomethylation. Distinct distribution of five gene mutations was not observed in the two groups as well. However, MIR-378-hypomethylated patients had significantly shorter overall survival than those without MIR-378 hypomethylation (p = .036). Moreover, among patients <60 years, hypomethylation of MIR-378 was confirmed to be an independent adverse prognostic factor by both Kaplan-Meier and Multivariate Cox analyses. CONCLUSION Hypomethylation of MIR-378 5'-flanking region is an adverse prognosticator in MDS, particularly in patients <60 years.
Collapse
Affiliation(s)
- De-Hong Wu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Department of Hematology, Kunshan Third People's Hospital, KunShan, Jiangsu, People's Republic of China
| | - Xiao-Wen Zhu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ying-Ying Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hong Guo
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Peng-Fei Wu
- Department of Hematology, Kunshan Third People's Hospital, KunShan, Jiangsu, People's Republic of China
| | - Xing-Li Zhang
- Department of Hematology, Kunshan Third People's Hospital, KunShan, Jiangsu, People's Republic of China
| | - Hong-Chun Qiu
- Department of Hematology, Kunshan Third People's Hospital, KunShan, Jiangsu, People's Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
14
|
McCord B, Gauthier Q, Alghanim H, Antunes J, Fernandez Tejero N, Duncan G, Balamurugan K. Applications of epigenetic methylation in body fluid identification, age determination and phenotyping. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Dawes K, Andersen A, Vercande K, Papworth E, Philibert W, Beach SR, Gibbons FX, Gerrard M, Philibert R. Saliva DNA Methylation Detects Nascent Smoking in Adolescents. J Child Adolesc Psychopharmacol 2019; 29:535-544. [PMID: 31180231 PMCID: PMC6727474 DOI: 10.1089/cap.2018.0176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objectives: Early identification of smoking, essential for the successful implementation of interventions, arrests the escalation of smoking and smoking-associated risk behaviors in adolescents. However, because nascent smoking is typically episodic and infrequent, enzyme-linked immunoassay reagent-based approaches that detect cotinine, a key nicotine metabolite, are not effective in identifying adolescents in the earliest stages of smoking. Epigenetic methods may offer an alternative approach for detecting early-stage smokers. In prior work, we and others have shown that the methylation status of cg05575921 of whole-blood DNA accurately predicts smoking status in regularly smoking adults and is sensitive to nascent smoking. Yet, the blood draws necessary to obtain DNA for this method may be poorly accepted by adolescents. Saliva could be an alternative source of DNA. However, the ability of saliva DNA methylation status to predict smoking status among adolescents is unknown. Methods: To explore the possibility of using salivary DNA for screening purposes, we examined the DNA methylation status at cg05575921 in saliva DNA samples from 162 high school aged subjects for whom we also had paired serum cotinine values. Results: Overall, the reliability of self-report of nicotine/tobacco use in these adolescents was poor with 67% of all subjects whose serum levels of cotinine was ≥2 ng/mL (n = 75) denying any use of nicotine-containing products in the past 6 months. However, the correspondence of the two biological measures of smoking was high, with serum cotinine positivity being strongly correlated with cg05575921 methylation (p < 0.0001). Receiver operating characteristic (ROC) analyses showed that cg05575921 methylation status could be used to classify those with positive serum cotinine values (≥2 ng/mL) from those denying smoking and have undetectable levels of cotinine. Conclusions: We conclude that saliva DNA methylation assessments hold promise as a means of detecting nascent smoking.
Collapse
Affiliation(s)
- Kelsey Dawes
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Allan Andersen
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Kyra Vercande
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Emma Papworth
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | | | - Steven R.H. Beach
- Center for Family Research, University of Georgia, Athens, Georgia
- Department of Psychology, University of Georgia, Athens, Georgia
| | | | - Meg Gerrard
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| | - Robert Philibert
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
- Behavioral Diagnostics, Coralville, Iowa
| |
Collapse
|
16
|
McCord BR, Gauthier Q, Cho S, Roig MN, Gibson-Daw GC, Young B, Taglia F, Zapico SC, Mariot RF, Lee SB, Duncan G. Forensic DNA Analysis. Anal Chem 2019; 91:673-688. [PMID: 30485738 DOI: 10.1021/acs.analchem.8b05318] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bruce R McCord
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Quentin Gauthier
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Sohee Cho
- Department of Forensic Medicine , Seoul National University , Seoul , 08826 , South Korea
| | - Meghan N Roig
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Georgiana C Gibson-Daw
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Brian Young
- Niche Vision, Inc. , Akron , Ohio 44311 , United States
| | - Fabiana Taglia
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Sara C Zapico
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Roberta Fogliatto Mariot
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Steven B Lee
- Forensic Science Program, Justice Studies Department , San Jose State University , San Jose , California 95192 , United States
| | - George Duncan
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|