1
|
Mhammad A, Dombi G, Dobó M, Szabó Z, Fiser B, Tóth G. Enantioseparation of Mirabegron Using Cyclodextrin-based Chiral Columns: High-performance Liquid Chromatography and Molecular Modeling Study. J Sep Sci 2025; 48:e70132. [PMID: 40205665 PMCID: PMC11982617 DOI: 10.1002/jssc.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
A novel high-performance liquid chromatography method for the enantioseparation of mirabegron (R-mirabegron), a selective β-3 adrenergic receptor agonist, using cyclodextrin (CD)-based chiral stationary phases (CSPs) was developed. Seven different CSPs containing β-, γ-, hydroxypropyl-β-, sulfobutyl-β-, carboxymethyl-β-, permethyl-β-, and phenylcarbamate-β-cyclodextrin were evaluated under both polar organic and reversed-phase conditions. Only the phenylcarbamate-β-cyclodextrin containing the Chiral CD-Ph column displayed enantiorecognition. Optimization of conditions using a full factorial design led to the determination of the most suitable conditions: a mobile phase composition of 90:10:0.1 methanol:water:diethylamine, a flow rate of 0.8 mL/min, and a column temperature of 40°C with enantiomeric elution order, where the impurity S-mirabegron elutes first. Using the optimized conditions, enantioseparation with Rs = 1.9 was achieved within 10 min. The developed method was validated according to current guidelines and successfully applied for the determination of S-mirabegron, as a chiral impurity in pharmaceutical formulations. The enantiorecognition mechanism was investigated by molecular docking and thermodynamic analysis. Using molecular modeling, the interactions between CDs and the analyte were analyzed at the molecular level, revealing that mirabegron interacts primarily with the phenylcarbamate groups on the outer surface of the structure. Enthalpy-controlled enantioseparation was consistently observed across all eluent compositions, regardless of the conditions. The developed and validated method is highly suitable for routine determination of the enantiomeric purity of mirabegron, offering a reliable tool for regulatory compliance.
Collapse
Affiliation(s)
- Ali Mhammad
- Department of Pharmaceutical ChemistrySemmelweis UniversityBudapestHungary
- Center for Pharmacology and Drug Research & DevelopmentSemmelweis UniversityBudapestHungary
| | - Gergely Dombi
- Department of Pharmaceutical ChemistrySemmelweis UniversityBudapestHungary
- Center for Pharmacology and Drug Research & DevelopmentSemmelweis UniversityBudapestHungary
| | - Máté Dobó
- Department of Pharmaceutical ChemistrySemmelweis UniversityBudapestHungary
- Center for Pharmacology and Drug Research & DevelopmentSemmelweis UniversityBudapestHungary
| | - Zoltán‐István Szabó
- George Emil Palade University of Medicine, PharmacyScience, and Technology of Targu MuresTargu MuresRomania
- Sz‐imfidum LtdLungaRomania
| | - Béla Fiser
- Institute of ChemistryUniversity of MiskolcMiskolcHungary
- Department of Biology and ChemistryFerenc Rákóczi II Transcarpathian Hungarian College of Higher EducationTranscarpathiaUkraine
- Department of Physical ChemistryFaculty of ChemistryUniversity of LodzLodzPoland
| | - Gergő Tóth
- Department of Pharmaceutical ChemistrySemmelweis UniversityBudapestHungary
- Center for Pharmacology and Drug Research & DevelopmentSemmelweis UniversityBudapestHungary
| |
Collapse
|
2
|
Yang H, Geng Y, Lin S, Wang L, Peng Y, Xu Y, Jing W, Wei J, He Z, Liu X. Online SFE-SFC-MS/MS analysis of pyraclostrobin and chiral mefentrifluconazole residues in mango and mango juice. Food Chem 2025; 464:141731. [PMID: 39481306 DOI: 10.1016/j.foodchem.2024.141731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
This study established an on-line SFE-SFC-MS/MS method for the determination of mefentrifluconazole (MFZ) enantiomers and pyraclostrobin (PY) in mango and mango juice. Key parameters of SFC separation and SFE extraction have been optimized for high efficiency, sensitivity, and environmental friendliness. Enthalpy controlled enantioseparations of MFZ were recognized by thermodynamic analysis. Molecular docking estimated the enantiomeric recognition of MFZ enantiomers binding to the chiral stationary phase. The mean recoveries (RSDs) were in the range of 94.5-106.8 % (4.2-15.4 %), 91.1-103 % (3.6-10.3 %), 94.7-102.7 % (3.8-9.8 %), and 93.2-106.9 % (4.1-12.1 %) for R-MFZ, S-MFZ, racemic MFZ, and PY under 3 spiked levels of interday assays (n = 15). The LOQs of R-MFZ, S-MFZ, and PY were 0.5, 0.5, and 1 μg kg-1. The method was further applied to real samples in Guangxi Province, China with low acute and chronic dietary risk for MFZ and PY in mango and mango juice.
Collapse
Affiliation(s)
- Hao Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| | - Yue Geng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China.
| | - Shu Lin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| | - Lu Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| | - Yi Peng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| | - Yaping Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| | - Wei Jing
- Shimadzu (China) Co., LTD. Beijing Branch, Beijing, China
| | - Jing Wei
- Institute of Food Testing, Hainan Academy of Inspection and Testing, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Haikou, China.
| | - Zeying He
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| | - Xiaowei Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, China; National Reference Laboratory for Agricultural Testing, Tianjin, China
| |
Collapse
|
3
|
Liu S, Li X, Zhu J, Liang L, Zhang H, Liao Y, Li J, Lian L, Tan H, Zhao F. Novel herbicide flusulfinam: absolute configuration, enantioseparation, enantioselective bioactivity, toxicity and degradation in paddy soils. PEST MANAGEMENT SCIENCE 2024; 80:5244-5255. [PMID: 39031670 DOI: 10.1002/ps.8251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Flusulfinam, a novel chiral herbicide, effectively controls Echinochloa crusgalli and Digitaria sanguinalis in paddy fields, indicating significant potential for practical agricultural applications. However, limited information is available on flusulfinam from a chiral perspective. A comprehensive evaluation of the enantiomeric levels of flusulfinam was performed. RESULTS Two enantiomers, R-(+)- and S-(-)-flusulfinam, were separately eluted using a Chiralcel OX-RH column. The bioactivity of R-flusulfinam against the two was 1.4-3.1 fold that of Rac-flusulfinam against two weed species. R-flusulfinam toxicity to Danio rerio larvae and Selenastrum capricornutumwere was 0.8- and 3.0-fold higher than Rac-flusulfinam, respectively. Degradation experiments were conducted using soil samples from four Chinese provinces. The findings indicated that S-flusulfinam (half-life T1/2 = 40.8 days) exhibits preferential degradation than R-flusulfinam (T1/2 = 46.2-57.8 days) in the soils of three provinces. Under anaerobic conditions, soil from Anhui exhibited preferential degradation of R-flusulfinam (T1/2 = 46.2 days) over S-flusulfinam (T1/2 = 63 days). Furthermore, two hydrolysis products of flusulfinam (M299 and M100) are proposed for the first time. CONCLUSION The enantioselective bioactivity, toxicity and degradation of flusulfinam were investigated. Our findings indicate that R-flusulfinam is an extremely effective and low-toxicity enantiomer for the tested species. The soil degradation test indicated that the degradation of flusulfinam was accelerated by higher organic matter content and lower soil pH. Furthermore, microbial communities may play a crucial role in driving the enantioselective degradation processes. This study lays the groundwork for the systematic evaluation of flusulfinam from an enantiomeric perspective. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiling Liu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Xiaoli Li
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Junqi Zhu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Liying Liang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Heng Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Ying Liao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Jiaheng Li
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Lei Lian
- Qingdao Kingagroot Compounds Co., Ltd., Qingdao, People's Republic of China
| | - Huihua Tan
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| | - Feng Zhao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
4
|
Dobó M, Dombi G, Köteles I, Fiser B, Kis C, Szabó ZI, Tóth G. Simultaneous Determination of Enantiomeric Purity and Organic Impurities of Dexketoprofen Using Reversed-Phase Liquid Chromatography-Enhancing Enantioselectivity through Hysteretic Behavior and Temperature-Dependent Enantiomer Elution Order Reversal on Polysaccharide Chiral Stationary Phases. Int J Mol Sci 2024; 25:2697. [PMID: 38473945 DOI: 10.3390/ijms25052697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
A reversed-phase high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of the potential impurities of dexketoprofen, including the distomer R-ketoprofen. After screening the separation capability of four polysaccharide columns (Lux Amylose-1, Lux Amylose-2, Lux Cellulose-1 and Lux Cellulose-2) in polar organic and in reversed-phase modes, appropriate enantioseparation was observed only on the Lux Amylose-2 column in an acidified acetonitrile/water mixture. A detailed investigation of the mobile phase composition and temperature for enantio- and chemoselectivity showed many unexpected observations. It was observed that both the resolution and the enantiomer elution order can be fine-tuned by varying the temperature and mobile phase composition. Moreover, hysteresis of the retention times and enantioselectivity was also observed in reversed-phase mode using methanol/water mixtures on amylose-type columns. This could indicate that the three-dimensional structure of the amylose column can change by transitioning from a polar organic to a reversed-phase mode, which affects the enantioseparation process. Temperature-dependent enantiomer elution order and rare enthalpic/entropic controlled enantioseparation in the operative temperature range were also observed in reversed-phase mode. To find the best methodological conditions for the determination of dexketoprofen impurities, a full factorial optimization design was performed. Using the optimized parameters (Lux Amylose-2 column with water/acetonitrile/acetic acid 50/50/0.1 (v/v/v) at a 1 mL/min flow rate at 20 °C), baseline separations were achieved between all compounds within 15 min. Our newly developed HPLC method was validated according to the current guidelines, and its application was tested on commercially available pharmaceutical formulations. According to the authors' knowledge, this is the first study to report hysteretic behavior on polysaccharide columns in reversed-phase mode.
Collapse
Affiliation(s)
- Máté Dobó
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes 9, H-1092 Budapest, Hungary
| | - Gergely Dombi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes 9, H-1092 Budapest, Hungary
| | - István Köteles
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes 9, H-1092 Budapest, Hungary
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 19, 41390 Göteborg, Sweden
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, H-3515 Miskolc, Hungary
- Ferenc Rakoczi II. Transcarpathian Hungarian College of Higher Education, 90200 Beregszasz, Ukraine
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-149 Lodz, Poland
| | - Csenge Kis
- Department of Pharmaceutical Industry and Management, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gh. Marinescu 38, 540139 Targu Mures, Romania
| | - Zoltán-István Szabó
- Department of Pharmaceutical Industry and Management, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gh. Marinescu 38, 540139 Targu Mures, Romania
- Sz-imfidum Ltd., Lunga nr. 504, 525401 Targu Mures, Romania
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes 9, H-1092 Budapest, Hungary
| |
Collapse
|
5
|
Tang L, Chen Y, Wu M, Tang T, Yao Y. Comparative studies of immobilized polysaccharide derivatives chiral stationary phases for enantioseparation of furanocoumarins and dihydroflavones and discussion on chiral recognition mechanism. J Sep Sci 2023; 46:e2300318. [PMID: 37590330 DOI: 10.1002/jssc.202300318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023]
Abstract
Enantiomeric separation of furanocoumarins and dihydroflavones compounds were systematically studied in the normal-phase mode using four different polysaccharide-type chiral stationary phases, namely, Chiralpak IA, Chiralpak IC, Chiralpak IG, and Chiralpak IK-3 by high-performance liquid chromatography. The effect of alcohol modifiers and alcohol content on enantiomeric separation was evaluated for the separation of furanocoumarins and dihydroflavones. All the eight compounds have achieved baseline separation with the resolutions ranging between 1.52 and 23.11. For a better insight into the enantiorecognition mechanisms, thermodynamic analysis was carried out. The mechanisms of chiral recognition have been discussed. Among four chiral columns, Chiralpak IG exhibited the most universal and the best enantioseparation ability toward furanocoumarins and dihydroflavones when used n-hexane-isopropanol and n-hexane-ethanol as mobile phase, respectively. The steric hindrance, hydrogen bonding, and π-π interaction played major roles in chiral recognition on Chiralpak IG. By comparing four chiral columns, this work systematically analyzed the separation methods of furanocoumarins and dihydroflavones for the first time and reported some active chiral ingredients of traditional Chinese medicine that have never been separated, which provided a further insight into the enantioseparation of furanocoumarins and dihydroflavones on chiral stationary phases.
Collapse
Affiliation(s)
- Luhuan Tang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yanyan Chen
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Mengru Wu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Tingting Tang
- College of Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yaqi Yao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
6
|
A Novel Enantioseparation and Trace Determination of Chiral Herbicide Flurtamone Using UPLC-MS/MS in Various Food and Environmental Matrices Based on Box-Behnken Design. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Peluso P, Mamane V. Stereoselective Processes Based on σ-Hole Interactions. Molecules 2022; 27:molecules27144625. [PMID: 35889497 PMCID: PMC9323542 DOI: 10.3390/molecules27144625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
The σ-hole interaction represents a noncovalent interaction between atoms with σ-hole(s) on their surface (such as halogens and chalcogens) and negative sites. Over the last decade, significant developments have emerged in applications where the σ-hole interaction was demonstrated to play a key role in the control over chirality. The aim of this review is to give a comprehensive overview of the current advancements in the use of σ-hole interactions in stereoselective processes, such as formation of chiral supramolecular assemblies, separation of enantiomers, enantioselective complexation and asymmetric catalysis.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy
- Correspondence: (P.P.); (V.M.)
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 Rue Blaise Pascal, 67008 Strasbourg, France
- Correspondence: (P.P.); (V.M.)
| |
Collapse
|
8
|
Zhao T, Liu Y, Liang H, Li L, Shi K, Wang J, Zhu Y, Ma C. Simultaneous determination of penthiopyrad enantiomers and its metabolite in vegetables, fruits, and cereals using ultra-high performance liquid chromatography-tandem mass spectrometry. J Sep Sci 2021; 45:441-455. [PMID: 34713971 DOI: 10.1002/jssc.202100446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023]
Abstract
Penthiopyrad is a novel succinate dehydrogenase inhibitor that has one chiral center and exists a metabolite, 1-methyl-3-trifluoromethyl-1H-pyrazole-4-carboxamide in its residue definition. An efficient analytical method for the simultaneous determination of penthiopyrad enantiomers and its metabolite in eight matrices were developed using modified quick, easy, cheap, effective, rugged, safe method, coupled with chiral stationary phase and ultra-high performance liquid chromatography-tandem mass spectrometry. The absolute configuration of penthiopyrad enantiomers was confirmed by polarimetry and electronic circular dichroism. Eight polysaccharide-based chiral stationary phases were evaluated in terms of the enantioseparation of penthiopyrad and separation-related factors (the mobile phase, flow rate and the column temperature) were optimized. To obtain an optimal purification, different sorbent combinations were assessed. The linearities of this method were acceptable in the range of 0.005 to 1 mg/L with R2 > 0.998, while the limits of detection and quantification were 0.0015 mg/kg and 0.01 mg/kg for two enantiomers and its metabolite. The average recoveries of R-(-)-penthiopyrad, S-(+)-penthiopyrad and the metabolite ranged from 75.4 to 109.1, 69.5 to 112.8, and 70.0 to 108.5%, respectively. The intra-day and inter-day relative standard deviations were less than 18.8%. The analytical method was accurate and convenient, which can support their further research on stereoselective degradation, residual monitoring and risk assessment.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, P. R. China
| | - Yu Liu
- School of Ecology and Environment, Inner Mongolia University, Hohhot, P. R. China
| | - Hongwu Liang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, P. R. China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, P. R. China
| | - Kaiwei Shi
- Institute for Pesticide Control, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Jia Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, P. R. China
| | - Yuke Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Cheng Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
9
|
Cross-linked γ-cyclodextrin metal-organic framework-a new stationary phase for the separations of benzene series and polycyclic aromatic hydrocarbons. Mikrochim Acta 2021; 188:245. [PMID: 34231056 DOI: 10.1007/s00604-021-04899-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 10/20/2022]
Abstract
The cross-linked γ-cyclodextrin metal-organic framework (CL-CD-MOF) was synthesized by crosslinking γ-cyclodextrin metal-organic framework (γ-CD-MOF) with diphenyl carbonate to separate benzene series and polycyclic aromatic hydrocarbons (PAHs). The separation ability of the CL-CD-MOF packed column was assessed in both reverse-phase (RP-) and normal-phase (NP-) modes. The retention mechanisms of these compounds were discussed and confirmed by combining molecular simulations in detail. It was found that baseline separation could be obtained in RP-HPLC mode and it was superior to commercial C18 column in separating xylene isomers. The interaction between CL-CD-MOF and analytes, such as dipole-dipole interaction, π-electron transfer interaction, hydrophobic interaction, and van der Waals force, may dominate the chromatographic separation, and CL-CD-MOF column had a certain shape recognition ability. In addition, the composition of the mobile phase also had a crucial effect. Moreover, the column demonstrated satisfactory stability and repeatability (the relative standard deviations of retention time, peak height, peak area, and half peak width for six replicate separations of the tested analytes were within the ranges 0.17-1.1%, 0.96-1.9%, 0.23-1.7%, and 0.32-1.9%, respectively) and there was no significant change in the separation efficiency for at least 3 years of use. Thermodynamic characteristics indicated that the process of separations on the CL-CD-MOF column was both negative enthalpy change (ΔH) and entropy change (ΔS) controlled. The excellent performance made CL-CD-MOF a promising HPLC stationary phase material for separation and determination of benzene series and PAHs.
Collapse
|
10
|
Vaňkátová P, Kubíčková A, Kalíková K. How mobile phase composition and column temperature affect enantiomer elution order of liquid crystals on amylose tris(3-chloro-5-methylphenylcarbamate) as chiral selector. Electrophoresis 2021; 42:1844-1852. [PMID: 33596334 DOI: 10.1002/elps.202000350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/10/2022]
Abstract
A comprehensive study into the effects of mobile phase composition and column temperature on enantiomer elution order was conducted with a set of chiral rod-like liquid crystalline materials. The analytes were structurally similar and comprised variances such as length of terminal alkyl chain, presence of chlorine, number of phenyl rings, and type of chiral center. Experiments were carried out in polar organic and reversed-phase modes using amylose tris(3-chloro-5-methylphenylcarbamate) immobilized on silica gel as the chiral stationary phase. For all liquid crystals, reversal of elution order of enantiomers was observed based on type of used cosolvent and/or its content in the mobile phase; for some of the liquid crystals a temperature-induced reversal was also observed. Both linear and nonlinear dependencies of natural logarithm of enantioselectivity on temperature were found. Tested mobile phases comprised pure organic solvents and binary and tertiary mixtures of acetonitrile with organic solvents and/or water. Effect of acidic/basic mobile phase additives was also tested. Effect of structure of chiral selector is briefly discussed.
Collapse
Affiliation(s)
- Petra Vaňkátová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Kubíčková
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Wang Z, Liu S, Zhao X, Tian B, Sun X, Zhang J, Gao Y, Shi H, Wang M. Enantioseparation and stereoselective dissipation of the novel chiral fungicide pydiflumetofen by ultra-high-performance liquid chromatography tandem mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111221. [PMID: 32911181 DOI: 10.1016/j.ecoenv.2020.111221] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Pydiflumetofen is a novel and efficient broad-spectrum chiral fungicide consisting of a pair of enantiomers. A simple and sensitive chiral analytical method was established to determine the enantiomers of this chiral fungicide in food and environmental samples by ultra-high-performance liquid chromatography tandem triple quadrupole mass spectrometry (UHPLC-MS/MS) using QuEChERS method coupled with octadecylsilane-dispersive solid-phase extraction (C18-dSPE) as extraction procedure. The specific optical rotation and the absolute configuration of the enantiomers were identified by polarimetry and electronic circular dichroism (ECD). The elution order of the pydiflumetofen enantiomers on Lux Cellulose-2 was S-(-)-pydiflumetofen and R-(+)-pydiflumetofen. The average recoveries of eleven matrices ranged from 71.3% to 107.4%. The intraday relative standard deviations (RSDs) were less than 11.8%, and the interday RSDs were less than 12.6% for the two enantiomers. Stereoselective dissipation in pakchoi and soil were observed: S-(-)-pydiflumetofen was degraded faster than R-(+)-pydiflumetofen in pakchoi, causing the enantiomer fraction (EF) of the enantiomers to change from 0.50 to 0.42 in 7 days. However, R-(+)-pydiflumetofen was degraded faster than S-(-)-pydiflumetofen in soil, causing the EF of the enantiomers to change from 0.49 to 0.52 in 21 days. This study provides a method for monitoring pydiflumetofen enantiomer residues, which is crucial for improving risk assessments and the development of chiral pesticides.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiling Liu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baohua Tian
- Fungicide Development Manager, Syngenta (China) Investment Co.,Ltd, Shanghai, 200120, China
| | - Xiaofang Sun
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingying Gao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Nikam SB, SK A. Enantioselective Separation Using Chiral Amino Acid Functionalized Polyfluorene Coated on Mesoporous Anodic Aluminum Oxide Membranes. Anal Chem 2020; 92:6850-6857. [DOI: 10.1021/acs.analchem.9b04699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shrikant B. Nikam
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Asha SK
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research, New Delhi 110025, India
| |
Collapse
|
13
|
Peluso P, Mamane V, Dessì A, Dallocchio R, Aubert E, Gatti C, Mangelings D, Cossu S. Halogen bond in separation science: A critical analysis across experimental and theoretical results. J Chromatogr A 2019; 1616:460788. [PMID: 31866134 DOI: 10.1016/j.chroma.2019.460788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023]
Abstract
The halogen bond (XB) is a noncovalent interaction involving a halogen acting as electrophile and a Lewis base. In the last decades XB has found practical application in several fields. Nevertheless, despite the pivotal role of noncovalent interactions in separation science, investigations of XB in this field are still in their infancy, and so far a limited number of studies focusing on solid phase extraction, liquid-liquid microextraction, liquid-phase chromatography, and gas chromatography separation have been published. In addition, in the last few years, our groups have been systematically studying the potentiality of XB for HPLC enantioseparations. On this basis, in the present paper up-to-date results emerging from focused experiments and theoretical analyses performed by our laboratories are integrated with a descriptive presentation of XB features and the few studies published until now in separation science. Then, the aim of this article is to provide a comprehensive and critical discussion of the topic, and account for some still open issues in the application of XB to separate chemical mixtures.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, Sassari I-07100, Italy.
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 rue Blaise Pascal, Strasbourg Cedex 67008, France.
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, Sassari I-07100, Italy
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, Sassari I-07100, Italy
| | - Emmanuel Aubert
- Cristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS 7036, Université de Lorraine, Bd des Aiguillettes, Vandoeuvre-les-Nancy 54506, France
| | - Carlo Gatti
- CNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", sezione di via Golgi, via C. Golgi 19, Milano 20133, Italy
| | - Debby Mangelings
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel - VUB, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi DSMN, Università Ca' Foscari Venezia, Via Torino 155, Mestre Venezia I-30172, Italy
| |
Collapse
|
14
|
Li S, Liu B, Xue M, Yu J, Guo X. Enantioseparation and determination of flumequine enantiomers in multiple food matrices with chiral liquid chromatography coupled with tandem mass spectrometry. Chirality 2019; 31:968-978. [PMID: 31435970 DOI: 10.1002/chir.23125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/20/2019] [Accepted: 08/04/2019] [Indexed: 01/06/2023]
Abstract
The present work firstly described the enantioseparation and determination of flumequine enantiomers in milk, yogurt, chicken, beef, egg, and honey samples by chiral liquid chromatography-tandem mass spectrometry. The enantioseparation was performed under reversed-phase conditions on a Chiralpak IC column at 20°C. The effects of chiral stationary phase, mobile phase components, and column temperature on the separation of flumequine enantiomers have been studied in detail. Target compounds were extracted from six different matrices with individual extraction procedure followed by cleanup using Cleanert C18 solid phase extraction cartridge. Good linearity (R2 >0.9913) was obtained over the concentration range of 0.125 to 12.5 ng g-1 for each enantiomer in matrix-matched standard calibration curves. The limits of detection and limits of quantification of two flumequine enantiomers were 0.015-0.024 and 0.045-0.063 ng g-1 , respectively. The average recoveries of the targeted compounds varied from 82.3 to 110.5%, with relative standard deviation less than 11.7%. The method was successfully applied to the determination of flumequine enantiomers in multiple food matrices, providing a reliable method for evaluating the potential risk in animal productions.
Collapse
Affiliation(s)
- Shuang Li
- Department Pharmaceutical Analysis, Institution Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Beibei Liu
- Department Pharmaceutical Analysis, Institution Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Mengyao Xue
- Department Pharmaceutical Analysis, Institution Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Jia Yu
- Department Pharmaceutical Analysis, Institution Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xingjie Guo
- Department Pharmaceutical Analysis, Institution Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
15
|
Zhao P, Dong X, Chen X, Guo X, Zhao L. Stereoselective Analysis of Chiral Pyrethroid Insecticides Tetramethrin and α-Cypermethrin in Fruits, Vegetables, and Cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9362-9370. [PMID: 31368700 DOI: 10.1021/acs.jafc.9b01850] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This manuscript presents an effective and robust method for simultaneous stereoselective determination of two pyrethroid insecticides, tetramethrin and α-cypermethrin in different food products by high-performance liquid chromatography. Enantioseparation was carried out using reversed-phase chromatography, and the influences of four polysaccharide-based chiral columns, mobile phase composition, and column temperature on retention were fully investigated. Satisfactory separation was obtained on Chiralpak IG column using acetonitrile-water (75:25, v/v) under isocratic conditions. To extract and purify the target analytes from food matrices, matrix solid-phase dispersion was employed with C18 as dispersant and primary secondary amine as well as graphitized carbon black as cleanup sorbents. Response surface method based on Box-Behnken design was implemented to assist optimization of the extraction variables. Then, method validation was done in real samples including specificity, linearity, sensitivity, trueness, precision, as well as stability, and its analytical performance fulfills the criteria recommended by the European Union SANTE/11945/2015, demonstrating its applicability in studying the stereochemistry of chiral tetramethrin and α-cypermethrin in food products.
Collapse
Affiliation(s)
- Pengfei Zhao
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Xinyi Dong
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Xiaoming Chen
- Daicel Chiral Technologies (China) Co., Ltd , Shanghai 200131 , China
| | - Xingjie Guo
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Longshan Zhao
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| |
Collapse
|
16
|
Wang Z, Wang X, Li S, Jiang Z, Guo X. Magnetic solid‐phase extraction based on carbon nanosphere@Fe3O4for enantioselective determination of eight triazole fungicides in water samples. Electrophoresis 2019; 40:1306-1313. [DOI: 10.1002/elps.201800530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Zhaokun Wang
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Xia Wang
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Shuang Li
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Zhen Jiang
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Xingjie Guo
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| |
Collapse
|