1
|
Wei Y, Li X, Zhu Q, Shan T, Wang H, Dai X, Wang Y, Zhang J. Are microhaplotypes derived from the 1000 Genomes Project reliable for forensic purposes? Forensic Sci Int Genet 2025; 78:103273. [PMID: 40106853 DOI: 10.1016/j.fsigen.2025.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Microhaplotypes (MHs) have emerged as an important genetic marker in forensic genetics. However, most studies have overlooked the potential for phasing errors within microhaplotypes based on the 1000 Genome Project (1kGP), which may impact the evaluation of various forensic parameters and lead to misleading results. In this study, we constructed a dense and extensive set of MHs across the human genome, using the expanded 1000 Genomes Project data aligned to GRCh38 reference genome. We applied three different SNP minor allele frequency (MAF) thresholds (0, 0.01, and 0.05) to evaluate the reliability of these markers. Utilizing pedigree data from 18 populations, which included a total of 602 trios, we scanned for and confirmed suspected phasing error events at these MH loci. We also sequenced 50 MHs for one trio of the Southern Han Chinese (CHS) population to further investigate these discrepancies. The results revealed the presence of phasing errors in MHs from 1kGP when analyzed using targeted enrichment and next-generation sequencing. The probability of suspected phasing error events was strongly and positively correlated with the effective number of alleles (Ae) and informativeness (In) of the markers. Additionally, these mismatch probabilities varied significantly across different continental populations. Additionally, when selecting loci, applying MAF filtering and avoiding regions such as the MHC can reduce the occurrence of such events to some extent. Based on these findings, we suggest that relying solely on sequencing data of the 1kGP for forensic purpose may be risky. A thorough investigation of the true forensic parameters of MHs is essential to ensure their reliability in forensic applications.
Collapse
Affiliation(s)
- Yifan Wei
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xi Li
- Jiaozuo Health Commission, Jiaozuo 454000, China
| | - Qiang Zhu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Tiantian Shan
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Haoyu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xuan Dai
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yufang Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Ji Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Liu J, Su Y, Wen Y, Jiang L, Li S, Zhao M, Chen X, Wang Z. Massively parallel sequencing of 74 microhaplotypes and forensic characteristics in three Chinese Sino-Tibetan populations. Forensic Sci Int Genet 2023; 66:102905. [PMID: 37301091 DOI: 10.1016/j.fsigen.2023.102905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/27/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Microhaplotype (MH), as an emerging type of forensic genetic marker in recent years, has the potential to support multiple forensic applications, especially for mixture deconvolution and biogeographic ancestry inference. Herein, we investigated the genotype data of 74 MHs included in a novel MH panel, the Ion AmpliSeq MH-74 Plex Microhaplotype Research Panel, in three Chinese Sino-Tibetan populations (Han, Tibetan, and Yi) using the Ion Torrent semiconductor sequencing. The sequencing performance, allele frequencies, effective number of alleles (Ae), informativeness (In), and forensic parameters were subsequently estimated and calculated. In addition, principal component analysis (PCA) and structure analysis were performed to explore the population relationships among the three populations and the ancestry component distribution. Overall, this novel MH panel is robust and reliable, and has an excellent sequencing performance. The Ae values ranged from 1.0126 to 7.0855 across all samples, and 75.68 % of MHs had Ae values >2.0000. Allele frequencies at some loci varied considerably among the three studied populations, and the mean In value was 0.0195. Moreover, the genetic affinity between Tibetans and Yis was closer than that between Tibetans and Hans. The aforementioned results suggest that the Ion AmpliSeq MH-74 Plex Microhaplotype Research Panel is highly polymorphic in three investigated populations and could be used as an effective tool for human forensics. Although these 74 MHs have demonstrated the competency in continental population stratification, a higher resolution for distinguishing intracontinental subpopulations and a more comprehensive database with sufficient reference population data still remain to be accomplished.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yonglin Su
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Yufeng Wen
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lirong Jiang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Suyu Li
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mengyao Zhao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiacan Chen
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Zhang R, Xue J, Tan M, Chen D, Xiao Y, Liu G, Zheng Y, Wu Q, Liao M, Lv M, Qu S, Liang W. An MPS-Based 50plex Microhaplotype Assay for Forensic DNA Analysis. Genes (Basel) 2023; 14:genes14040865. [PMID: 37107623 PMCID: PMC10137789 DOI: 10.3390/genes14040865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Microhaplotypes (MHs) are widely accepted as powerful markers in forensic studies. They have the advantage of both short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs), with no stutter and amplification bias, short fragments and amplicons, low mutation and recombination rates, and high polymorphisms. In this study, we constructed a panel of 50 MHs that are distributed on 21 chromosomes and analyzed them using the Multiseq multiple polymerase chain reaction (multi-PCR) targeted capture sequencing protocol based on the massively parallel sequencing (MPS) platform. The sizes of markers and amplicons ranged between 11–81 bp and 123–198 bp, respectively. The sensitivity was 0.25 ng, and the calling results were consistent with Sanger sequencing and the Integrative Genomics Viewer (IGV). It showed measurable polymorphism among sequenced 137 Southwest Chinese Han individuals. No significant deviations in the Hardy–Weinberg equilibrium (HWE) and linkage disequilibrium (LD) were found at all MHs after Bonferroni correction. Furthermore, the specificity was 1:40 for simulated two-person mixtures, and the detection rates of highly degraded single samples and mixtures were 100% and 93–100%, respectively. Moreover, animal DNA testing was incomplete and low depth. Overall, our MPS-based 50-plex MH panel is a powerful forensic tool that provides a strong supplement and enhancement for some existing panels.
Collapse
Affiliation(s)
- Ranran Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Jiaming Xue
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Mengyu Tan
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Dezhi Chen
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Yuanyuan Xiao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Guihong Liu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Yazi Zheng
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Qiushuo Wu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
- West China Forensics Center, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Shengqiu Qu
- West China Forensics Center, Sichuan University, No. 16, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| |
Collapse
|
4
|
Evaluation of a SNP-STR haplotype panel for forensic genotype imputation. Forensic Sci Int Genet 2023; 62:102801. [PMID: 36272212 DOI: 10.1016/j.fsigen.2022.102801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Short tandem repeat polymorphism (STR)-based individual identification is a popular and reliable method in many forensic applications. However, STRs still frequently fail to find any matched records. In such cases, if known STRs could provide more information, it would be very helpful to solve specific problems. Genotype imputation has long been used in the study of single nucleotide polymorphisms (SNPs) and has recently been introduced into forensic fields. The idea is that, through a reference haplotype panel containing SNPs and STRs, we can obtain unknown genetic information through genotype imputation based on known STR or SNP genotypes. Several recent studies have already demonstrated this exciting idea, and a 1000 Genomes SNP-STR haplotype panel has also been released. To further study the performance of genotype imputation in forensic fields, we collected STR, microhaplotype (MH) and SNP array genotypes from Chinese Han population individuals and then performed genotype imputation analysis based on the released reference panel. As a result, the average locus imputation accuracy was ∼83 % (or ∼70 %) when SNPs in the SNP array (or MH SNPs) were imputed from STRs, and was ∼30 % when highly polymorphic markers (STRs and MHs) were imputed from each other. When STRs were imputed from SNP array, the average locus imputation accuracy increased to ∼48 %. After analyzing the match scores between real STRs and the STRs imputed from SNPs, ∼80 % of studied STR records can be connected to corresponding SNP records, which may help for individual identification. Our results indicate that genotype imputation has great potential for forensic applications.
Collapse
|
5
|
Butler JM. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci Int Synerg 2022; 6:100311. [PMID: 36618991 PMCID: PMC9813539 DOI: 10.1016/j.fsisyn.2022.100311] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review paper covers the forensic-relevant literature in biological sciences from 2019 to 2022 as a part of the 20th INTERPOL International Forensic Science Managers Symposium. Topics reviewed include rapid DNA testing, using law enforcement DNA databases plus investigative genetic genealogy DNA databases along with privacy/ethical issues, forensic biology and body fluid identification, DNA extraction and typing methods, mixture interpretation involving probabilistic genotyping software (PGS), DNA transfer and activity-level evaluations, next-generation sequencing (NGS), DNA phenotyping, lineage markers (Y-chromosome, mitochondrial DNA, X-chromosome), new markers and approaches (microhaplotypes, proteomics, and microbial DNA), kinship analysis and human identification with disaster victim identification (DVI), and non-human DNA testing including wildlife forensics. Available books and review articles are summarized as well as 70 guidance documents to assist in quality control that were published in the past three years by various groups within the United States and around the world.
Collapse
Affiliation(s)
- John M. Butler
- National Institute of Standards and Technology, Special Programs Office, 100 Bureau Drive, Mail Stop 4701, Gaithersburg, MD, USA
| |
Collapse
|
6
|
Sun K, Yao Y, Yun L, Zhang C, Xie J, Qian X, Tang Q, Sun L. Application of machine learning for ancestry inference using multi-InDel markers. Forensic Sci Int Genet 2022; 59:102702. [DOI: 10.1016/j.fsigen.2022.102702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 01/04/2023]
|
7
|
Cui W, Nie S, Fang Y, Chen M, Zhao M, Lan Q, Shen C, Zhu B. Insights into AIM-InDel diversities in Yunnan Miao and Hani ethnic groups of China for forensic and population genetic purposes. Hereditas 2022; 159:22. [PMID: 35590349 PMCID: PMC9121611 DOI: 10.1186/s41065-022-00238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ancestry informative markers are regarded as useful tools for inferring the ancestral information of an individual, which have been widely used in the criminal investigations and population genetic studies. Previously, a multiplex amplification panel containing 39 AIM-InDel loci was constructed. This study aims to investigate the genetic polymorphisms of these 39 AIM-InDel loci in Yunnan Hani and Miao ethnic groups, and to uncover their genetic affinities with reference populations based on the AIM-InDel markers. MATERIALS AND METHODS In this research, 39 AIM-InDel profiles of 203 unrelated Miao individuals and 203 unrelated Hani individuals in Yunnan province of China were acquired. Additionally, we evaluated the genetic polymorphisms of 39 InDel loci in Yunnan Miao and Hani groups. Moreover, the genetic relationships among Yunnan Miao, Hani and reference populations were also clarified based on Nei's genetic distances, pairwise fixation indexes, principal component analyses, phylogenetic analyses, and STRUCTURE analyses. RESULTS Genetic diversity analyses demonstrated that these InDel loci showed varying degrees of genetic polymorphisms, and could be utilized in forensic identifications in Yunnan Miao and Hani groups. The results of principal component analyses, phylogenetic analyses and Structure analyses revealed that Yunnan Miao and Hani groups had closer genetic relationships with East Asian populations, especially with the populations from Southern China. This research enriched the genetic data of Chinese ethnic minority, and provided ancestral information of Yunnan Miao and Hani groups from the perspective of population genetics.
Collapse
Affiliation(s)
- Wei Cui
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yating Fang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Man Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ming Zhao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qiong Lan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chunmei Shen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
8
|
Microhaplotype and Y-SNP/STR (MY): A novel MPS-based system for genotype pattern recognition in two-person DNA mixtures. Forensic Sci Int Genet 2022; 59:102705. [DOI: 10.1016/j.fsigen.2022.102705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/10/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022]
|
9
|
Yang J, Chen J, Ji Q, Yu Y, Li K, Kong X, Xie S, Zhan W, Mao Z, Yu Y, Li D, Chen P, Chen F. A highly polymorphic panel of 40-plex microhaplotypes for the Chinese Han population and its application in estimating the number of contributors in DNA mixtures. Forensic Sci Int Genet 2021; 56:102600. [PMID: 34688115 DOI: 10.1016/j.fsigen.2021.102600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
Microhaplotypes (MHs) have great potential in multiple forensic applications and have proven to be promising markers in complex DNA mixture analysis. In this study, we developed a multiplex panel of 40 highly polymorphic MHs for the Chinese Han population, evaluated its forensic values, and explored its application in predicting the number of contributors (NOCs) in DNA mixtures. The panel consisted of 20 newly proposed loci and 20 previously reported loci with lengths spanning less than 120 bp. The average effective number of alleles (Ae) was 3.77, and the cumulative matching probability (CMP) and the cumulative power of exclusion (CPE) reached 1.2E-37 and 1-2.1E-12, respectively, in the Chinese Han population from the 1000 Genomes Project. Further validation on 150 Chinese Han individuals showed that Ae ranged from 2.62 to 4.41 with a mean value of 3.61, and CMP and CPE were 3.61E-36 and 1-1.84E-12, respectively, indicating that this panel was informative for personal identification and paternity testing in the studied population. To estimate NOC in DNA mixtures, we developed a machine learning model based on this panel. As a result, the accuracies in artificial DNA mixtures reached 95.24% for 2- to 4-person mixtures and 83.33% for 2- to 6-person mixtures. Furthermore, the NOC estimation on simulated profiles with allele dropout showed that this panel was still robust under slight dropout. In conclusion, this panel has value for forensic identification and NOC estimation of DNA mixtures.
Collapse
Affiliation(s)
- Jiawen Yang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Ji Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qiang Ji
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Kai Li
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Xiaochao Kong
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Sumei Xie
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Wenxuan Zhan
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Zhengsheng Mao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Yanfang Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Ding Li
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Peng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
10
|
Wen D, Sun S, Liu Y, Li J, Yang Z, Kureshi A, Fu Y, Li H, Jiang B, Jin C, Cai J, Zha L. Considering the flanking region variants of nonbinary SNP and phenotype-informative SNP to constitute 30 microhaplotype loci for increasing the discriminative ability of forensic applications. Electrophoresis 2021; 42:1115-1126. [PMID: 33483973 DOI: 10.1002/elps.202000341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022]
Abstract
The flanking region variants of nonbinary SNPs and phenotype-informative SNPs (piSNPs) have been observed, which may greatly improve the discriminative ability after constituting microhaplotype. In this study, 30 microhaplotype loci based on the nonbinary SNPs and piSNPs (shown to be related to phenotypes such as hair and eye color) were selected. Genotyping were conducted on 100 unrelated northern Han Chinese, and the 26 populations from the 1000 Genome Project were also included for comparison of populations differentiation. The simulated study was conducted for evaluating the efficiency of kinship testing. These 30 microhaplotype loci we selected had good polymorphism, with a mean effective number of alleles (Ae) of 3.46. The average Ae increase was 1.27 compared with the target SNPs. The populations from the five regions worldwide could also be distinguished using these loci. The results of kinship testing showed that these microhaplotype loci had the similar ability as 15 STR loci of AmpFlSTRR IdentifilerR PCR Amplification Kit to identify the biological parent and a stronger ability to exclude the nonbiological parents. So, these 30 microhaplotype loci may be multifunctional for forensic application, including the ability of personal identification and kinship testing equivalent to 15 STR loci, and the power of ancestry inference for distinguishing the main intercontinental population. Moreover, our selected phenotypic microhaplotype loci may theoretically have phenotype prediction capabilities. But the phenotype prediction efficiency of these phenotypic microhaplotype loci may be worse than that of piSNPs and the detailed prediction accuracy of different populations needs to be further studied.
Collapse
Affiliation(s)
- Dan Wen
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, P. R. China
| | - Shule Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, P. R. China
| | - Ying Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, P. R. China
| | - Jienan Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, P. R. China
| | - Zedeng Yang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, P. R. China
| | - Aliye Kureshi
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, P. R. China
| | - Yan Fu
- Huazhi Biotech Co., Ltd, Changsha, P. R. China
| | - Henan Li
- Microanaly Gene Technologies Co., Ltd, Hefei, P. R. China
| | - Bowei Jiang
- The First Research Institute of the Ministry of Public Security P.R.C, Beijing, P. R. China
| | - Chuan Jin
- The First Research Institute of the Ministry of Public Security P.R.C, Beijing, P. R. China
| | - Jifeng Cai
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, P. R. China
| | - Lagabaiyila Zha
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, P. R. China
| |
Collapse
|