1
|
Lipka E, Dallocchio R, Sechi B, Rukhaia M, Jibuti G, Chankvetadze B, Mamane V, Peluso P. Insights Into the Enantioseparation of Polyhalogenated 4,4'-Bipyridines With a Cellulose Tris(3,5-Dimethylphenylcarbamate)-Based Chiral Column by Using Supercritical Fluid Chromatography. Electrophoresis 2025. [PMID: 40448563 DOI: 10.1002/elps.8156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/25/2025] [Accepted: 05/14/2025] [Indexed: 06/02/2025]
Abstract
In the last decade, by integrating experimental and computational analyses, it was demonstrated that halogen bond (HaB) may contribute to binding and enantiorecognition mechanisms underlying the HPLC enantioseparation of halogenated chiral analytes by using cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC)-based chiral columns and n-hexane-based mixtures as mobile phases. When used as a pivotal component of the mobile phase in supercritical fluid chromatography (SFC), carbon dioxide is often considered as an n-hexane-like nonpolar solvent because of its low dielectric constant and zero molecular dipole moment. On the other hand, carbon dioxide may also serve as hydrogen bond (HB) and HaB acceptor due to the presence of nonbonding electrons on the two oxygen atoms, interacting with analyte enantiomers, chiral selectors, and co-solvents. On this basis, we report herein the results of a study aiming at evaluating the impact of using carbon dioxide in SFC in place of n-hexane in HPLC on halogen-dependent enantioseparations by using atropisomeric halogenated 4,4'-bipyridines as analytes and Lux Cellulose-1 as CDMPC-based chiral column. The experimental investigation was complemented by a computational study performed using (a) quantum mechanics (QM) calculations to map and quantify noncovalent interactions possibly underlying the contact of the analytes with carbon dioxide and with the distinctive pendant groups of the CDMPC and (b) molecular dynamics (MD) simulations to visualize noncovalent interactions acting in the analyte 1/CDMPC chromatographic system in different media. The use of MD simulations to model enantioseparations performed in carbon dioxide-based media was not reported in the literature so far.
Collapse
Affiliation(s)
- Emmanuelle Lipka
- Laboratoire de Chimie Analytique, UMR 1167-UFR3S-Pharmacie, Lille Cedex, France
| | | | - Barbara Sechi
- Institute of Biomolecular Chemistry ICB, CNR, Li Punti, Sassari, Italy
| | - Mikheil Rukhaia
- Institute of Applied Mathematics, Tbilisi State University, Tbilisi, Georgia
| | - Giorgi Jibuti
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe CLIC, Strasbourg Cedex, France
| | - Paola Peluso
- Institute of Biomolecular Chemistry ICB, CNR, Li Punti, Sassari, Italy
| |
Collapse
|
2
|
Tsui HW, Wang YJ, Wu PJ. Conformational changes in polysaccharide-based chiral selectors induced by mobile phase composition: Effects on enantioselective retention and enantiomer elution order reversal. J Chromatogr A 2025; 1742:465660. [PMID: 39799868 DOI: 10.1016/j.chroma.2025.465660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Despite having identical physicochemical properties, chiral molecules require effective separation techniques due to their distinct pharmacological effects. Polysaccharide-based chiral stationary phases (CSPs) are widely used for chiral separations in liquid chromatography; however, the mechanisms of chiral recognition are not well understood. This research explored the adsorption, retention, and chiral recognition mechanisms of three amylose-based CSPs: Chiralpak ID, IF, and IG. The effect of mobile phase composition on enantioselective retention was examined using four acyloin-type chiral solutes in normal-phase mode. For pantolactone (PL) and methyl mandelate (MM), reversals in enantiomer elution order were observed with ID and IG sorbents, respectively, at 2 vol.% isopropanol (iPrOH). As the iPrOH concentration increased, the adsorption of MM enantiomers reached an energetic barrier at this concentration, causing discontinuities in the enthalpy-entropy compensation. Conversely, while the reversal behavior of PL was also attributed to conformational changes in the ID polymer, it did not encounter an energetic barrier and thus remained in line with the enthalpy-entropy compensation. For the IF sorbent, no significant changes in enantioselective retention or enthalpic curves were noted. Nevertheless, a reversal was observed for benzoin (B) enantiomers on the IF sorbent at 10 vol.% iPrOH. It was postulated that the IF sorbent contains two chiral sites with opposing recognition abilities, and their relative contributions to the apparent enantioselectivity of B are influenced by the iPrOH concentration. These findings highlight the importance of conformational changes in chiral selectors, driven by mobile phase composition, in chiral recognition mechanisms. Understanding these effects is crucial for developing predictive models of chiral retention and enhancing optimization of chiral separation processes.
Collapse
Affiliation(s)
- Hung-Wei Tsui
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Jiun Wang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608 Taiwan
| | - Pei-Jia Wu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608 Taiwan
| |
Collapse
|
3
|
Peluso P, Mamane V, Spissu Y, Casu G, Dessì A, Dallocchio R, Sechi B, Palmieri G, Rozzo C. Iodinated 4,4'-Bipyridines with Antiproliferative Activity Against Melanoma Cell Lines. ChemMedChem 2024; 19:e202300662. [PMID: 38489502 DOI: 10.1002/cmdc.202300662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/17/2024]
Abstract
In the last decade, biological processes involving halogen bond (HaB) as a leading interaction attracted great interest. However, although bound iodine atoms are considered powerful HaB donors, few iodinated new drugs were reported so far. Recently, iodinated 4,4'-bipyridines showed interesting properties as HaB donors in solution and in the solid state. In this paper, a study on the inhibition activity of seven halogenated 4,4'-bipyridines against malignant melanoma (MM) cell proliferation is described. Explorative dose/response proliferation assays were first performed with three 4,4'-bipyridines by using four MM cell lines and the normal BJ fibroblast cell line as control. Among them, the A375 MM cell line was the most sensitive, as determined by MTT assays, which was selected to evaluate the antiproliferative activity of all 4,4'-bipyridines. Significantly, the presence of an electrophilic iodine impacted the biological activity of the corresponding compounds. The 3,3',5,5'-tetrachloro-2-iodo-4,4'-bipyridine showed significant antiproliferation activity against the A375 cell line, and lower toxicity on BJ fibroblasts. Through in silico studies, the stereoelectronic features of possible sites determining the bioactivity were explored. These results pave the way for the utilization of iodinated 4,4'-bipyridines as templates to design new promising HaB-enabled inhibitors of MM cell proliferation.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Centre National de la Recherche Scientifique (CNRS), 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Ylenia Spissu
- Istituto di Scienze delle Produzioni Alimentari ISPA-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Giuseppina Casu
- Istituto di Ricerca Genetica e Biomedica IRGB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare ICB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare ICB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Barbara Sechi
- Istituto di Chimica Biomolecolare ICB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Giuseppe Palmieri
- Istituto di Ricerca Genetica e Biomedica IRGB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| | - Carla Rozzo
- Istituto di Ricerca Genetica e Biomedica IRGB-CNR, Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca, 3, Li Punti, 07100, Sassari, Italy
| |
Collapse
|
4
|
Scriba GKE. Update on chiral recognition mechanisms in separation science. J Sep Sci 2024; 47:e2400148. [PMID: 38772711 DOI: 10.1002/jssc.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
The stereospecific analysis of chiral molecules is an important issue in many scientific fields. In separation sciences, this is achieved via the formation of transient diastereomeric complexes between a chiral selector and the selectand enantiomers driven by molecular interactions including electrostatic, ion-dipole, dipole-dipole, van der Waals or π-π interactions as well as hydrogen or halogen bonds depending on the nature of selector and selectand. Nuclear magnetic resonance spectroscopy and molecular modeling methods are currently the most frequently applied techniques to understand the selector-selectand interactions at a molecular level and to draw conclusions on the chiral separation mechanism. The present short review summarizes some of the recent achievements for the understanding of the chiral recognition of the most important chiral selectors combining separation techniques with molecular modeling and/or spectroscopic techniques dating between 2020 and early 2024. The selectors include polysaccharide derivatives, cyclodextrins, macrocyclic glycopeptides, proteins, donor-acceptor type selectors, ion-exchangers, crown ethers, and molecular micelles. The application of chiral ionic liquids and chiral deep eutectic solvents, as well as further selectors, are also briefly addressed. A compilation of all published literature on chiral selectors has not been attempted.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
5
|
Dallocchio R, Dessì A, Sechi B, Peluso P. Molecular Dynamics Simulations of Amylose- and Cellulose-Based Selectors and Related Enantioseparations in Liquid Phase Chromatography. Molecules 2023; 28:7419. [PMID: 37959839 PMCID: PMC10647714 DOI: 10.3390/molecules28217419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
In the last few decades, theoretical and technical advancements in computer facilities and computational techniques have made molecular modeling a useful tool in liquid-phase enantioseparation science for exploring enantioselective recognition mechanisms underlying enantioseparations and for identifying selector-analyte noncovalent interactions that contribute to binding and recognition. Because of the dynamic nature of the chromatographic process, molecular dynamics (MD) simulations are particularly versatile in the visualization of the three-dimensional structure of analytes and selectors and in the unravelling of mechanisms at molecular levels. In this context, MD was also used to explore enantioseparation processes promoted by amylose and cellulose-based selectors, the most popular chiral selectors for liquid-phase enantioselective chromatography. This review presents a systematic analysis of the literature published in this field, with the aim of providing the reader with a comprehensive picture about the state of the art and what is still missing for modeling cellulose benzoates and the phenylcarbamates of amylose and cellulose and related enantioseparations with MD. Furthermore, advancements and outlooks, as well as drawbacks and pitfalls still affecting the applicability of MD in this field, are also discussed. The importance of integrating theoretical and experimental approaches is highlighted as an essential strategy for profiling mechanisms and noncovalent interaction patterns.
Collapse
Affiliation(s)
| | | | | | - Paola Peluso
- Unit of Enantioselective Chromatography and Molecular Recognition, Institute of Biomolecular Chemistry ICB, Secondary Branch of Sassari, CNR, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy; (R.D.); (A.D.); (B.S.)
| |
Collapse
|
6
|
Dallocchio R, Dessì A, Sechi B, Chankvetadze B, Jibuti G, Cossu S, Mamane V, Peluso P. Enantioseparation of planar chiral ferrocenes on cellulose-based chiral stationary phases: Benzoate versus carbamate pendant groups. Electrophoresis 2023; 44:203-216. [PMID: 36177685 DOI: 10.1002/elps.202200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 02/01/2023]
Abstract
In this study, the enantioseparation of 14 planar chiral ferrocenes containing halogen atoms, and methyl, iodoethynyl, phenyl, and 2-naphthyl groups, as substituents, was explored with a cellulose tris(4-methylbenzoate) (CMB)-based chiral column under multimodal elution conditions. n-Hexane/2-propanol (2-PrOH) 95:5 v/v, pure methanol (MeOH), and MeOH/water 90:10 v/v were used as mobile phases (MPs). With CMB, baseline enantioseparations were achieved for nine analytes with separation factors (α) ranging from 1.24 to 1.77, whereas only three analytes could be enantioseparated with 1.14 ≤ α ≤ 1.51 on a cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC)-based column, used as a reference for comparison, under the same elution conditions. Pendant group-dependent reversal of the enantiomer elution order was observed in several cases by changing CMB to CDMPC. The impact of analyte and chiral stationary phase (CSP) structure, and MP polarity on the enantioseparation, was evaluated. The two cellulose-based CSPs featured by different pendant groups were also compared in terms of thermodynamics. For this purpose, enthalpy (ΔΔH°), entropy (ΔΔS°) and free energy (ΔΔG°) differences, isoenantioselective temperatures (Tiso ), and enthalpy/entropy ratios (Q), associated with the enantioseparations, were derived from van 't Hoff plots by using n-hexane/2-PrOH 95:5 v/v and methanol/water 90:10 v/v as MPs. With the aim to disclose the functions of the different substituents in mechanisms and noncovalent interactions underlying analyte-selector complex formation at molecular level, electrostatic potential (V) analysis and molecular dynamics simulations were used as computational techniques. On this basis, enantioseparations and related mechanisms were investigated by integrating theoretical and experimental data.
Collapse
Affiliation(s)
- Roberto Dallocchio
- Enantioselective Chromatography and Molecular Recognition Unit, Istituto di Chimica Biomolecolare (ICB) CNR, Sassari, Italy
| | - Alessandro Dessì
- Enantioselective Chromatography and Molecular Recognition Unit, Istituto di Chimica Biomolecolare (ICB) CNR, Sassari, Italy
| | - Barbara Sechi
- Enantioselective Chromatography and Molecular Recognition Unit, Istituto di Chimica Biomolecolare (ICB) CNR, Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| | - Giorgi Jibuti
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Mestre Venezia, Italy
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR 7177, CNRS-Université de Strasbourg, Strasbourg, France
| | - Paola Peluso
- Enantioselective Chromatography and Molecular Recognition Unit, Istituto di Chimica Biomolecolare (ICB) CNR, Sassari, Italy
| |
Collapse
|
7
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
8
|
Peluso P, Mamane V. Stereoselective Processes Based on σ-Hole Interactions. Molecules 2022; 27:molecules27144625. [PMID: 35889497 PMCID: PMC9323542 DOI: 10.3390/molecules27144625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
The σ-hole interaction represents a noncovalent interaction between atoms with σ-hole(s) on their surface (such as halogens and chalcogens) and negative sites. Over the last decade, significant developments have emerged in applications where the σ-hole interaction was demonstrated to play a key role in the control over chirality. The aim of this review is to give a comprehensive overview of the current advancements in the use of σ-hole interactions in stereoselective processes, such as formation of chiral supramolecular assemblies, separation of enantiomers, enantioselective complexation and asymmetric catalysis.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy
- Correspondence: (P.P.); (V.M.)
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 Rue Blaise Pascal, 67008 Strasbourg, France
- Correspondence: (P.P.); (V.M.)
| |
Collapse
|
9
|
Dessì A, Sechi B, Dallocchio R, Chankvetadze B, Pérez‐Baeza M, Cossu S, Mamane V, Pale P, Peluso P. Comparative enantioseparation of planar chiral ferrocenes on polysaccharide‐based chiral stationary phases. Chirality 2022; 34:609-619. [DOI: 10.1002/chir.23417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/19/2022]
Affiliation(s)
| | - Barbara Sechi
- Istituto di Chimica Biomolecolare ICB CNR Sassari Italy
| | | | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences Tbilisi State University Tbilisi Georgia
| | - Mireia Pérez‐Baeza
- Departamento de Química Analítica Universitat de València València Spain
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi DSMN Università Ca' Foscari Venezia Venice Italy
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC Strasbourg Cedex France
| | - Patrick Pale
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC Strasbourg Cedex France
| | - Paola Peluso
- Istituto di Chimica Biomolecolare ICB CNR Sassari Italy
| |
Collapse
|