1
|
Schimek A, Ng J, Will F, Hubbuch J. Mechanistic modeling of the elution behavior and convective entrapment of vesicular stomatitis virus on an ion exchange chromatography monolith. J Chromatogr A 2025; 1748:465832. [PMID: 40073642 DOI: 10.1016/j.chroma.2025.465832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Developing a downstream purification process for replication-competent enveloped virus particles presents a significant challenge. This is largely due to the highly complex particle structures, as well as complexities of emerging purification modalities for such virus particles. In this study, an unexpected fluid-dynamic effect was observed during the elution of enveloped virus particles from an ion exchange chromatography monolith. This effect led to peak tailing and the separation of virus particle subpopulations. Upon considering possible causes, convective entrapment was identified as a plausible explanation. To investigate this effect, a mechanistic modeling approach representing the electrostatic resin interactions and the convective entrapment effect was implemented. The introduced Langmuir approximation of the convective entrapment showed good alignment with reference data from experiments. The model reproduced the retention effect, and furthermore suggested two virus particle populations due to the stronger retention effect on the tailing subpopulation caused by convective entrapment.
Collapse
Affiliation(s)
- Adrian Schimek
- ViraTherapeutics GmbH, Bundesstraße 27, 6063 Rum, Austria
| | - Judy Ng
- ViraTherapeutics GmbH, Bundesstraße 27, 6063 Rum, Austria.
| | - Federico Will
- Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Str. 65, 88397 Biberach, Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV Biomolecular Separation Engineering, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| |
Collapse
|
2
|
Ovari G, Johnson TF, Foroutan F, Malmquist G, Townsend M, Bracewell DG. Fabrication of electrospun ion exchanger adsorbents with morphologies designed for the separation of proteins and plasmid DNA. J Chromatogr A 2024; 1734:465268. [PMID: 39191182 DOI: 10.1016/j.chroma.2024.465268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Electrospun cellulose adsorbents are an emergent class of materials applied to a variety of bioprocess separations as an analogue to conventional packed bed chromatography. Electrospun adsorbents have proven to be effective as rapid cycling media, enabling high throughput separation of proteins and viral vectors without compromising selectivity and recovery. However, there is a current lack of knowledge in relation to the manipulation and control of electrospun adsorbent structure with function and performance to cater to the separation needs of emerging, diverse biological products. In this study, a series of electrospun cellulose adsorbents were fabricated by adjusting their manufacturing conditions. A range of fiber diameters (400 to 600 nm) was created by changing the electrospinning polymer solution. Additionally, a range of porosities (0.4 to 0.7 v/v) was achieved by varying the laminating pressures on the electrospun sheets. The adsorbents were functionalized with different degrees of quaternary amine ligand density to create 18 prototype anion exchangers. Their morphology was characterized by BET nitrogen adsorption surface area, X-ray computed tomography, capillary flow porometry and scanning electron microscopy measurements. The physical characteristics of the adsorbents were used in an adapted semi-empirical model and compared to measured permeability data. Permeabilities of prototypes ranged from 10-2 to 10-4 mDarcy. The measured data showed good adherence to modelled data with possible improvements in acquiring wet adsorbent characteristics instead of dried material. Finally, the electrospun adsorbents were characterized for their binding capacity of model proteins of different sizes (diameters of 3.5 nm and 8.9 nm) and plasmid DNA. Static binding capacities ranged from 5 mg/ml to 25 mg/ml for the proteins and plasmid DNA and showed <20 % deviation from monolayer coverage based on BET surface area. Therefore, it was concluded that the electrospun adsorbents most likely adsorb monolayers of proteins and plasmid DNA on the surface with minimal steric hindrance.
Collapse
Affiliation(s)
- Gyorgy Ovari
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT UK.
| | - Thomas F Johnson
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT UK
| | - Farzad Foroutan
- Cytiva, Sycamore House, Gunnels Wood Road, Stevenage, SG1 2BP UK
| | | | - Matthew Townsend
- Cytiva, Sycamore House, Gunnels Wood Road, Stevenage, SG1 2BP UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT UK
| |
Collapse
|
3
|
Coll De Peña A, Gutterman-Johns E, Gautam GP, Rutberg J, Frej MB, Mehta DR, Shah S, Tripathi A. Assessment of pDNA isoforms using microfluidic electrophoresis. Electrophoresis 2024; 45:1525-1534. [PMID: 38571381 DOI: 10.1002/elps.202300293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
The recent rise in nucleic acid-based vaccines and therapies has resulted in an increased demand for plasmid DNA (pDNA). As a result, there is added pressure to streamline the manufacturing of these vectors, particularly their design and construction, which is currently considered a bottleneck. A significant challenge in optimizing pDNA production is the lack of high-throughput and rapid analytical methods to support the numerous samples produced during the iterative plasmid construction step and for batch-to-batch purity monitoring. pDNA is generally present as one of three isoforms: supercoiled, linear, or open circular. Depending on the ultimate use, the desired isoform may be supercoiled in the initial stages for cell transfection or linear in the case of mRNA synthesis. Here, we present a high-throughput microfluidic electrophoresis method capable of detecting the three pDNA isoforms and determining the size and concentration of the predominant supercoiled and linear isoforms from 2 to 7 kb. The limit of detection of the method is 0.1 ng/µL for the supercoiled and linear isoforms and 0.5 ng/µL for the open circular isoform, with a maximum loading capacity of 10-15 ng/µL. The turnaround time is 1 min/sample, and the volume requirement is 10 µL, making the method suitable for process optimization and batch-to-batch analysis. The results presented in this study will enhance the understanding of electrophoretic transport in microscale systems dependent on molecular conformations and potentially aid technological advances in diverse areas relevant to microfluidic devices.
Collapse
Affiliation(s)
- Adriana Coll De Peña
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Everett Gutterman-Johns
- Department of Molecular Biology, Cell Biology, and Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | | | - Jenna Rutberg
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Menel Ben Frej
- Applied Genomics, Revvity, Hopkinton, Massachusetts, USA
| | - Dipti R Mehta
- Applied Genomics, Revvity, Hopkinton, Massachusetts, USA
| | - Shreyas Shah
- Applied Genomics, Revvity, Hopkinton, Massachusetts, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Josic D. Editorial. Electrophoresis 2023; 44:1921-1922. [PMID: 38092689 DOI: 10.1002/elps.202370134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Affiliation(s)
- Djuro Josic
- Juraj Dobrila University, Faculty of Medicine, Laboratory for Clinical Chemistry, Pula, Croatia
| |
Collapse
|