1
|
Hayat A, Dawi E, Tahira A, Bhatti MA, Halepoto IA, Ali G, Mahar IA, Naz I, Shah AA, Solangi AG, Aftab U, Alshammari RH, Nafady A, Vigolo B, Ibupoto ZH. Phytochemical-enhanced NiO nanostructures for superior oxygen evolution and asymmetric supercapacitor applications. NANO EXPRESS 2024; 5:045015. [DOI: 10.1088/2632-959x/ad9ac0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
The development of new energy conversion and storage technologies has contributed to the widespread use of renewable energy. However, new methodologies for electrochemical energy storage systems remain to be developed. This study presents a facile, low-cost, scalable, and environmentally friendly method for the synthesis of nickel oxide (NiO) nanostructures by hydrothermal methods using lotus root extract. The different volumes of lotus root extract were tested on NiO nanostructures (sample 1, sample 2) using 1 ml and 2 ml amounts of the extract, respectively. Therefore, phytochemicals from lotus extract have influenced the surface morphology, crystal quality, optical band gap, electrical conductivity, and surface active sites of NiO nanostructures. Sample 2 of the NiO nanostructures was found to be highly active for oxygen evolution reaction (OER) and showed an overpotential of 380 mV at 10 mA cm−2 and a durability of 30 h at 10 mA cm−2. Furthermore, sample 2 of NiO has shown specific capacitance of 1503.84 F g−1 at 2 A g−1 as well as cycling stability over a period of forty thousand GCD cycles. The percentage specific capacitance retention were highly improved up to 100.6%. An asymmetric energy storage device has been constructed using NiO sample 2 as the anode electrode material, demonstrating excellent specific capacity of about 1113 C g−1 at 5 A g−1. For the asymmetric supercapacitor device, a power density of 20000 W kg−1 and an energy density of 245 Wh kg−1 were obtained. In a study of cycling stability for 40000 GCD cycles, it was observed that the asymmetric device retained 96.86% of its specific capacitance. A significant contribution was made to the electrochemical performance of sample 2 of NiO by phytochemicals derived from lotus extract.
Collapse
|
2
|
Ferreira R, Morawski FM, Pessanha EC, de Lima SLS, da Costa DS, Ribeiro GAC, Vaz J, Mouta R, Tanaka AA, Liu L, da Silva MIP, Tofanello A, Vitorino HA, da Silva AGM, Garcia MAS. Facile Gram-Scale Synthesis of NiO Nanoflowers for Highly Selective and Sensitive Electrocatalytic Detection of Hydrazine. ACS OMEGA 2023; 8:11978-11986. [PMID: 37033825 PMCID: PMC10077530 DOI: 10.1021/acsomega.2c07638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/07/2023] [Indexed: 06/01/2023]
Abstract
The design and development of efficient and electrocatalytic sensitive nickel oxide nanomaterials have attracted attention as they are considered cost-effective, stable, and abundant electrocatalytic sensors. However, although innumerable electrocatalysts have been reported, their large-scale production with the same activity and sensitivity remains challenging. In this study, we report a simple protocol for the gram-scale synthesis of uniform NiO nanoflowers (approximately 1.75 g) via a hydrothermal method for highly selective and sensitive electrocatalytic detection of hydrazine. The resultant material was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. For the production of the modified electrode, NiO nanoflowers were dispersed in Nafion and drop-cast onto the surface of a glassy carbon electrode (NiO NF/GCE). By cyclic voltammetry, it was possible to observe the excellent performance of the modified electrode toward hydrazine oxidation in alkaline media, providing an oxidation overpotential of only +0.08 V vs Ag/AgCl. In these conditions, the peak current response increased linearly with hydrazine concentration ranging from 0.99 to 98.13 μmol L-1. The electrocatalytic sensor showed a high sensitivity value of 0.10866 μA L μmol-1. The limits of detection and quantification were 0.026 and 0.0898 μmol L-1, respectively. Considering these results, NiO nanoflowers can be regarded as promising surfaces for the electrochemical determination of hydrazine, providing interesting features to explore in the electrocatalytic sensor field.
Collapse
Affiliation(s)
- Rayse
M. Ferreira
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - Franciele M. Morawski
- Departamento
de Química, Universidade Federal
de Santa Catarina (UFSC), Eng. Agronômico Andrei Cristian Ferreira, s/n - Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Emanuel C. Pessanha
- Departamento
de Engenharia Química e de Materiais - DEQM, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), R. Marquês de São Vicente, 225 - Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Scarllett L. S. de Lima
- Departamento
de Engenharia Química e de Materiais - DEQM, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), R. Marquês de São Vicente, 225 - Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Diana S. da Costa
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - Geyse A. C. Ribeiro
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - João Vaz
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - Rodolpho Mouta
- Departamento
de Física, Universidade Federal do
Ceará (UFC), Av. Mister Hull, s/n − Pici, 60455-760 Fortaleza, CE, Brazil
| | - Auro A. Tanaka
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| | - Liying Liu
- Centro
Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 - Urca, 22290-180 Rio de Janeiro, RJ, Brazil
| | - Maria I. P. da Silva
- Departamento
de Engenharia Química e de Materiais - DEQM, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), R. Marquês de São Vicente, 225 - Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Aryane Tofanello
- Center for
Natural and Human Sciences (CCNH), Universidade
Federal do ABC (UFABC), Av. dos Estados, 5001, - Bangú, 09210-170 Santo André, SP, Brazil
| | - Hector A. Vitorino
- Centro
de Investigación en Biodiversidad para la Salud, Universidad Privada Norbert Wiener, Jirón Larrabure y Unanue 110, Lima 15108, Perú
| | - Anderson G. M. da Silva
- Departamento
de Engenharia Química e de Materiais - DEQM, Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio), R. Marquês de São Vicente, 225 - Gávea, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Marco A. S. Garcia
- Departamento
de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 - Vila
Bacanga, 65080-805 São Luís, MA, Brazil
| |
Collapse
|
3
|
Shahparast S, Asadpour-Zeynali K. α-MnO 2/FeCo-LDH on Nickel Foam as an Efficient Electrocatalyst for Water Oxidation. ACS OMEGA 2023; 8:1702-1709. [PMID: 36643503 PMCID: PMC9835177 DOI: 10.1021/acsomega.2c07580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The ever-expanding human societies on the one hand and the diminishing fossil fuel resources on the other have driven man to find a suitable, cheap, clean, and accessible source of energy. Water splitting is a good solution to this crisis. Because of the slow kinetics of water oxidation reaction, it is important to select efficient and durable electrocatalysts to improve the reaction kinetics. In this research, α-MnO2/FeCo-LDH catalysts on nickel foam were developed for water oxidation, which exhibited good catalytic performance and stability in a 0.1 M KOH solution. The electrocatalysts were synthesized by hydrothermal methods and characterized by XRD, FTIR, Raman, SEM, TEM, EDS, and MAP techniques. The proposed modified electrode has large exchange current, low overpotential, and small Tafel slope. Here, only an overpotential of 210 mV is required to achieve a current density of 5 mA cm2 with a Tafel slope of 70.4 mV dec-1 in an alkaline solution.
Collapse
Affiliation(s)
- Saeedeh Shahparast
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz5166616471, Iran
| | - Karim Asadpour-Zeynali
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz5166616471, Iran
- Pharmaceutical
Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz51664, Iran
| |
Collapse
|