1
|
Gunawan S, Soetikno V, Purwaningsih EH, Ferdinal F, Wuyung PE, Ramadhani D. 6-Gingerol, a Bioactive Compound of Zingiber officinale, Ameliorates High-Fat High-Fructose Diet-Induced Non-Alcoholic Related Fatty Liver Disease in Rats. J Exp Pharmacol 2024; 16:455-466. [PMID: 39712345 PMCID: PMC11662909 DOI: 10.2147/jep.s492971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024] Open
Abstract
Purpose Endoplasmic reticulum (ER) stress has a prominent role in the pathogenesis of high-fat diet-induced non-alcohol related fatty liver disease (NAFLD). The aim of this study is to investigate the effects of 6-G on the reduction of ER stress-induced NAFLD in metabolic syndrome (MetS) rats. Methods Twenty-five male Sprague-Dawley rats were fed with a high-fat high-fructose (HFHF) diet for 16 weeks. The rats were treated orally with 6-G (50,100, and 200 mg/kgBW) once daily for eight weeks. At Week 16, all animals were sacrificed, and serum and liver tissue were harvested for biochemical and structural analysis. Results NAFLD liver rats were shown to have elevated protein expression of GRP78, and ER-associated apoptotic protein, such as IRE1, TRAF2, p-JNK, and p-NF-κB, which were considerably reduced by the 6-G at three doses treatment. Furthermore, a significant increase in liver apoptosis and non-alcoholic steatohepatitis (NAS) score were observed in the NAFLD rat liver and which were also attenuated by the 6-G treatment at three doses. 6-G treatment also reduced ALT, AST, and ALP serum levels. Conclusion Considering all the findings, it is suggested that the 6-G treatment could be a potential candidate therapy in treating ER stress-induced NAFLD in rats.
Collapse
Affiliation(s)
- Shirly Gunawan
- Department of Pharmacology, Faculty of Medicine, Universitas Tarumanagara, Jakarta, Indonesia
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Frans Ferdinal
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Tarumanagara, Jakarta, Indonesia
| | - Puspita Eka Wuyung
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Animal Research Facility, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Dwi Ramadhani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Banten, Indonesia
| |
Collapse
|
2
|
Raab N, Zeh N, Kretz R, Weiß L, Stadermann A, Lindner B, Fischer S, Stoll D, Otte K. Nature as blueprint: Global phenotype engineering of CHO production cells based on a multi-omics comparison with plasma cells. Metab Eng 2024; 83:110-122. [PMID: 38561148 DOI: 10.1016/j.ymben.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Especially for the production of artificial, difficult to express molecules a further development of the CHO production cell line is required to keep pace with the continuously increasing demands. However, the identification of novel targets for cell line engineering to improve CHO cells is a time and cost intensive process. Since plasma cells are evolutionary optimized for a high antibody expression in mammals, we performed a comprehensive multi-omics comparison between CHO and plasma cells to exploit optimized cellular production traits. Comparing the transcriptome, proteome, miRNome, surfaceome and secretome of both cell lines identified key differences including 392 potential overexpression targets for CHO cell engineering categorized in 15 functional classes like transcription factors, protein processing or secretory pathway. In addition, 3 protein classes including 209 potential knock-down/out targets for CHO engineering were determined likely to affect aggregation or proteolysis. For production phenotype engineering, several of these novel targets were successfully applied to transient and transposase mediated overexpression or knock-down strategies to efficiently improve productivity of CHO cells. Thus, substantial improvement of CHO productivity was achieved by taking nature as a blueprint for cell line engineering.
Collapse
Affiliation(s)
- Nadja Raab
- Biberach University of Applied Sciences, Germany.
| | - Nikolas Zeh
- Biberach University of Applied Sciences, Germany; Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Robin Kretz
- Hochschule Albstadt Sigmaringen, Germany; NMI, Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Linus Weiß
- Biberach University of Applied Sciences, Germany
| | - Anna Stadermann
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Benjamin Lindner
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Dieter Stoll
- NMI, Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Kerstin Otte
- Biberach University of Applied Sciences, Germany
| |
Collapse
|
3
|
Han B, Lv Y, Moser D, Zhou X, Woehrle T, Han L, Osterman A, Rudelius M, Choukér A, Lei P. ACE2-independent SARS-CoV-2 virus entry through cell surface GRP78 on monocytes - evidence from a translational clinical and experimental approach. EBioMedicine 2023; 98:104869. [PMID: 37967509 PMCID: PMC10679867 DOI: 10.1016/j.ebiom.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND SARS-CoV-2 infects host cells via an ACE2/TMPRSS2 entry mechanism. Monocytes and macrophages, which play a key role during severe COVID-19 express only low or no ACE2, suggesting alternative entry mechanisms in these cells. In silico analyses predicted GRP78, which is constitutively expressed on monocytes and macrophages, to be a potential candidate receptor for SARS-CoV-2 virus entry. METHODS Hospitalized COVID-19 patients were characterized regarding their pro-inflammatory state and cell surface GRP78 (csGRP78) expression in comparison to healthy controls. RNA from CD14+ monocytes of patients and controls were subjected to transcriptome analysis that was specifically complemented by bioinformatic re-analyses of bronchoalveolar lavage fluid (BALF) datasets of COVID-19 patients with a focus on monocyte/macrophage subsets, SARS-CoV-2 infection state as well as GRP78 gene expression. Monocyte and macrophage immunohistocytochemistry on GRP78 was conducted in post-mortem lung tissues. SARS-CoV-2 spike and GRP78 protein interaction was analyzed by surface plasmon resonance, GST Pull-down and Co-Immunoprecipitation. SARS-CoV-2 pseudovirus or single spike protein uptake was quantified in csGRP78high THP-1 cells. FINDINGS Cytokine patterns, monocyte activation markers and transcriptomic changes indicated typical COVID-19 associated inflammation accompanied by upregulated csGRP78 expression on peripheral blood and lung monocytes/macrophages. Subsequent cell culture experiments confirmed an association between elevated pro-inflammatory cytokine levels and upregulation of csGRP78. Interaction of csGRP78 and SARS-CoV-2 spike protein with a dissociation constant of KD = 55.2 nM was validated in vitro. Infection rate analyses in ACE2low and GRP78high THP-1 cells showed increased uptake of pseudovirus expressing SARS-CoV-2 spike protein. INTERPRETATION Our results demonstrate that csGRP78 acts as a receptor for SARS-CoV-2 spike protein to mediate ACE2-independent virus entry into monocytes. FUNDING Funded by the Sino-German-Center for Science Promotion (C-0040) and the Germany Ministry BMWi/K [DLR-grant 50WB1931 and RP1920 to AC, DM, TW].
Collapse
Affiliation(s)
- Bing Han
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Yibing Lv
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominique Moser
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Xiaoqi Zhou
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tobias Woehrle
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Lianyong Han
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Neuherberg, Germany
| | - Andreas Osterman
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Martina Rudelius
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Alexander Choukér
- Laboratory of Translational Research 'Stress and Immunity', Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany.
| | - Ping Lei
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Zhao L, Lv Y, Zhou X, Guo Z, Li H, Guo Y, Liu T, Tu L, Zhu L, Tao J, Shen G, He Y, Lei P. Secreted glucose regulated protein78 ameliorates DSS-induced mouse colitis. Front Immunol 2023; 14:986175. [PMID: 36776831 PMCID: PMC9909966 DOI: 10.3389/fimmu.2023.986175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
The secreted form of 78-kDa glucose-regulated protein (sGRP78) has been widely reported for its property in aiding resolution of inflammatory. However, little is known on its potential in the treatment of colitis. To investigate the expression pattern and functional outcome of GRP78 in ulcerative colitis, its expression was measured in human and murine colitis samples. It was found that GRP78 was spontaneously secreted to a high level in gut, which is a physiological site of immune tolerance. During the active phase of DSS-induced colitis, the sGRP78 level was significantly reduced but rebounded quickly during resolving phase, making it a potential candidate for the treatment of colitis. In the following experiments, the administration of sGRP78 was proved to decrease susceptibility to experimental colitis, as indicated by an overall improvement of intestinal symptoms, restoration of TJ integrity, decreased infiltration of immune cells and impaired production of inflammatory cytokines. And specific cleavage of endogenous sGRP78 could aggravate DSS colitis. Adoptive transfer of sGRP78-conditioned BMDMs reduced inflammation in the gut. We linked sGRP78 treatment with altered macrophage biology and skewed macrophage polarization by inhibiting the TLR4-dependent MAP-kinases and NF-κB pathways. Based on these studies, as a naturally occurring immunomodulatory molecule, sGRP78 might be an attractive novel therapeutic agent for acute intestinal inflammation.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China,Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibing Lv
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heli Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Department of Gastroenterology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Tu
- Department of Cancer Center, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangru Zhu
- Department of Cancer Center, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong He
- Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China,*Correspondence: Ping Lei, ; Yong He,
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Ping Lei, ; Yong He,
| |
Collapse
|
5
|
Kyeong M, Lee JS. Endogenous BiP reporter system for simultaneous identification of ER stress and antibody production in Chinese hamster ovary cells. Metab Eng 2022; 72:35-45. [PMID: 35182754 DOI: 10.1016/j.ymben.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
Abstract
As the biopharmaceutical industry expands, improving the production of therapeutic proteins using Chinese hamster ovary (CHO) cells is important. However, excessive and complicated protein production causes protein misfolding and triggers endoplasmic reticulum (ER) stress. When ER stress occurs, cells mediate the unfolded protein response (UPR) pathway to restore protein homeostasis and folding capacity of the ER. However, when the cells fail to control prolonged ER stress, UPR induces apoptosis. Therefore, monitoring the degree of UPR is required to achieve high productivity and the desired quality. In this study, we developed a fluorescence-based UPR monitoring system for CHO cells. We integrated mGFP into endogenous HSPA5 encoding BiP, a major ER chaperone, and the primary ER stress activation sensor, using CRISPR/Cas9-mediated targeted integration. The mGFP expression level changed according to the ER stress induced by chemical treatment and batch culture in the engineered cell line. Using this monitoring system, we demonstrated that host cells and recombinant CHO cell lines with different mean fluorescence intensities (MFI; basal expression levels of BiP) possess a distinct capacity for stress culture conditions induced by recombinant protein production. Antibody-producing recombinant CHO cell lines were generated using site-specific integration based on host cells equipped with the BiP reporter system. Targeted integrants showed a strong correlation between productivity and MFI, reflecting the potential of this monitoring system as a screening readout for high producers. Taken together, these data demonstrate the utility of the endogenous BiP reporter system for the detection of real-time dynamic changes in endogenous UPR and its potential for applications in recombinant protein production during CHO cell line development.
Collapse
Affiliation(s)
- Minji Kyeong
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
6
|
Gáll T, Pethő D, Nagy A, Hendrik Z, Méhes G, Potor L, Gram M, Åkerström B, Smith A, Nagy P, Balla G, Balla J. Heme Induces Endoplasmic Reticulum Stress (HIER Stress) in Human Aortic Smooth Muscle Cells. Front Physiol 2018; 9:1595. [PMID: 30515102 PMCID: PMC6255930 DOI: 10.3389/fphys.2018.01595] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Accumulation of damaged or misfolded proteins resulted from oxidative protein modification induces endoplasmic reticulum (ER) stress by activating the pathways of unfolded protein response. In pathologic hemolytic conditions, extracellular free hemoglobin is submitted to rapid oxidation causing heme release. Resident cells of atherosclerotic lesions, after intraplaque hemorrhage, are exposed to heme leading to oxidative injury. Therefore, we raised the question whether heme can also provoke ER stress. Smooth muscle cells are one of the key players of atherogenesis; thus, human aortic smooth muscle cells (HAoSMCs) were selected as a model cell to reveal the possible link between heme and ER stress. Using immunoblotting, quantitative polymerase chain reaction and immunocytochemistry, we quantitated the markers of ER stress. These were: phosphorylated eIF2α, Activating transcription factor-4 (ATF4), DNA-damage-inducible transcript 3 (also known as C/EBP homology protein, termed CHOP), X-box binding protein-1 (XBP1), Activating transcription factor-6 (ATF6), GRP78 (glucose-regulated protein, 78kDa) and heme responsive genes heme oxygenase-1 and ferritin. In addition, immunohistochemistry was performed on human carotid artery specimens from patients who had undergone carotid endarterectomy. We demonstrate that heme increases the phosphorylation of eiF2α in HAoSMCs and the expression of ATF4. Heme also enhances the splicing of XBP1 and the proteolytic cleavage of ATF6. Consequently, there is up-regulation of target genes increasing both mRNA and protein levels of CHOP and GRP78. However, TGFβ and collagen type I decreased. When the heme binding proteins, alpha-1-microglobulin (A1M) and hemopexin (Hpx) are present in cell media, the ER stress provoked by heme is inhibited. ER stress pathways are also retarded by the antioxidant N-acetyl cysteine (NAC) indicating that reactive oxygen species are involved in heme-induced ER stress. Consistent with these findings, elevated expression of the ER stress marker GRP78 and CHOP were observed in smooth muscle cells of complicated lesions with hemorrhage compared to either atheromas or healthy arteries. In conclusion, heme triggers ER stress in a time- and dose-dependent manner in HAoSMCs. A1M and Hpx as well as NAC effectively hamper heme-induced ER stress, supporting their use as a potential therapeutic approach to reverse such a deleterious effects of heme toxicity.
Collapse
Affiliation(s)
- Tamás Gáll
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dávid Pethő
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamária Nagy
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Potor
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Magnus Gram
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Ann Smith
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Péter Nagy
- Department of Vascular Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Qin K, Ma S, Li H, Wu M, Sun Y, Fu M, Guo Z, Zhu H, Gong F, Lei P, Shen G. GRP78 Impairs Production of Lipopolysaccharide-Induced Cytokines by Interaction with CD14. Front Immunol 2017; 8:579. [PMID: 28588578 PMCID: PMC5440525 DOI: 10.3389/fimmu.2017.00579] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022] Open
Abstract
The 78-kDa glucose-regulated protein (GRP78) is a stress-inducible chaperone that resides primarily in the endoplasmic reticulum. GRP78 has been described to be released at times of cellular stress and as having extracellular properties that are anti-inflammatory or favor the resolution of inflammation. In the current study, we confirmed that GRP78 impaired the production of lipopolysaccharide-induced pro-inflammatory cytokines in GRP78-treated bone-marrow-derived dendritic cells (DCs). To explore the underlying mechanism, first of all, GRP78 was checked to be bound to the plasma membrane. Interestingly, such binding promoted endocytosis of toll-like receptor (TLR) 4 and reduction in TLR4 on the plasma surface had a key role in desensitization of GRP78-treated DCs to lipopolysaccharide. Given that cluster of differentiation (CD)14 is a crucial regulator of TLR4 endocytosis, interaction of GRP78 with CD14 was investigated next. Data showed that GRP78 co-localized with CD14 on the plasma membrane and glutathione-S-transferase-GRP78 precipitated CD14. In CD14 knockout mice, down-regulation of tumor necrosis factor-α and reduction in TLR4 on the plasma surface were abrogated in GRP78-treated DCs. Overall, these data suggested that GRP78 mediates endocytosis of TLR4 by targeting CD14 to favor the resolution of inflammation.
Collapse
Affiliation(s)
- Kai Qin
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simin Ma
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heli Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanli Sun
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingpeng Fu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifen Zhu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|