1
|
Li R, Ma L, Geng Y, Chen X, Zhu J, Zhu H, Wang D. Uteroplacental microvascular remodeling in health and disease. Acta Physiol (Oxf) 2025; 241:e70035. [PMID: 40156319 DOI: 10.1111/apha.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
The microvascular system is essential for delivering oxygen and nutrients to tissues while removing metabolic waste. During pregnancy, the uteroplacental microvascular system undergoes extensive remodeling to meet the increased demands of the fetus. Key adaptations include vessel dilation and increases in vascular volume, density, and permeability, all of which ensure adequate placental perfusion while maintaining stable maternal blood pressure. Structural and functional abnormalities in the uteroplacental microvasculature are associated with various gestational complications, posing both immediate and long-term risks to the health of both mother and infant. In this review, we describe the changes in uteroplacental microvessels during pregnancy, discuss the pathogenic mechanisms underlying diseases such as preeclampsia, fetal growth restriction, and gestational diabetes, and summarize current clinical and research approaches for monitoring microvascular health. We also provide an update on research models for gestational microvascular complications and explore solutions to several unresolved challenges. With advancements in research techniques, we anticipate significant progress in understanding and managing these diseases, ultimately leading to new therapeutic strategies to improve maternal and fetal health.
Collapse
Affiliation(s)
- Ruizhi Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Ma
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yingchun Geng
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaoxue Chen
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiaxi Zhu
- Life Sciences, Faculty of Arts & Science, University of Toronto - St. George Campus, Toronto, Ontario, Canada
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Dong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Ma L, Yin L, Zhu H, Li J, Wang D. Two-dimensional vascularized liver organoid on extracellular matrix with defined stiffness for modeling fibrotic and normal tissues. J Tissue Eng 2024; 15:20417314241268344. [PMID: 39130682 PMCID: PMC11316963 DOI: 10.1177/20417314241268344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024] Open
Abstract
Antifibrotic drug screening requires evaluating the inhibitory effects of drug candidates on fibrotic cells while minimizing any adverse effects on normal cells. It is challenging to create organ-specific vascularized organoids that accurately model fibrotic and normal tissues for drug screening. Our previous studies have established methods for culturing primary microvessels and epithelial cells from adult tissues. In this proof-of-concept study, we used rats as a model organism to create a two-dimensional vascularized liver organoid model that comprised primary microvessels, epithelia, and stellate cells from adult livers. To provide appropriate substrates for cell culture, we engineered ECMs with defined stiffness to mimic the different stages of fibrotic tissues and normal tissues. We examined the effects of two TGFβ signaling inhibitors, A83-01 and pirfenidone, on the vascularized liver organoids on the stiff and soft ECMs. We found that A83-01 inhibited fibrotic markers while promoting epithelial genes of hepatocytes and cholangiocytes. However, it inhibited microvascular genes on soft ECM, indicating a detrimental effect on normal tissues. Furthermore, A83-01 significantly promoted the expression of markers of stem cells and cancers, increasing the potential risk of it being a carcinogen. In contrast, pirfenidone, an FDA-approved compound for antifibrotic treatments, did not significantly affect all the genes examined on soft ECM. Although pirfenidone had minor effects on most genes, it did reduce the expression of collagens, the major components of fibrotic tissues. These results explain why pirfenidone can slow fibrosis progression with minor side effects in clinical trials. In conclusion, our study presents a method for creating vascularized liver organoids that can accurately mimic fibrotic and normal tissues for drug screening. Our findings provide valuable insights into the potential risks and benefits of using A83-01 and pirfenidone as antifibrotic drugs. This method can be applied to other organs to create organ-specific vascularized organoids for drug development.
Collapse
Affiliation(s)
- Lei Ma
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Lin Yin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Yu Y, Leng Y, Song X, Mu J, Ma L, Yin L, Zheng Y, Lu Y, Li Y, Qiu X, Zhu H, Li J, Wang D. Extracellular Matrix Stiffness Regulates Microvascular Stability by Controlling Endothelial Paracrine Signaling to Determine Pericyte Fate. Arterioscler Thromb Vasc Biol 2023; 43:1887-1899. [PMID: 37650330 DOI: 10.1161/atvbaha.123.319119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The differentiation of pericytes into myofibroblasts causes microvascular degeneration, ECM (extracellular matrix) accumulation, and tissue stiffening, characteristics of fibrotic diseases. It is unclear how pericyte-myofibroblast differentiation is regulated in the microvascular environment. Our previous study established a novel 2-dimensional platform for coculturing microvascular endothelial cells (ECs) and pericytes derived from the same tissue. This study investigated how ECM stiffness regulated microvascular ECs, pericytes, and their interactions. METHODS Primary microvessels were cultured in the TGM2D medium (tubular microvascular growth medium on 2-dimensional substrates). Stiff ECM was prepared by incubating ECM solution in regular culture dishes for 1 hour followed by PBS wash. Soft ECM with Young modulus of ≈6 kPa was used unless otherwise noted. Bone grafts were prepared from the rat skull. Immunostaining, RNA sequencing, RT-qPCR (real-time quantitative polymerase chain reaction), Western blotting, and knockdown experiments were performed on the cells. RESULTS Primary microvascular pericytes differentiated into myofibroblasts (NG2+αSMA+) on stiff ECM, even with the TGFβ (transforming growth factor beta) signaling inhibitor A83-01. Soft ECM and A83-01 cooperatively maintained microvascular stability while inhibiting pericyte-myofibroblast differentiation (NG2+αSMA-/low). We thus defined 2 pericyte subpopulations: primary (NG2+αSMA-/low) and activated (NG2+αSMA+) pericytes. Soft ECM promoted microvascular regeneration and inhibited fibrosis in bone graft transplantation in vivo. As integrins are the major mechanosensor, we performed RT-qPCR screening of integrin family members and found Itgb1 (integrin β1) was the major subunit downregulated by soft ECM and A83-01 treatment. Knocking down Itgb1 suppressed myofibroblast differentiation on stiff ECM. Interestingly, ITGB1 phosphorylation (Y783) was mainly located on microvascular ECs on stiff ECM, which promoted EC secretion of paracrine factors, including CTGF (connective tissue growth factor), to induce pericyte-myofibroblast differentiation. CTGF knockdown or monoclonal antibody treatment partially reduced myofibroblast differentiation, implying the participation of multiple pathways in fibrosis formation. CONCLUSIONS ECM stiffness and TGFβ signaling cooperatively regulate microvascular stability and pericyte-myofibroblast differentiation. Stiff ECM promotes EC ITGB1 phosphorylation (Y783) and CTGF secretion, which induces pericyte-myofibroblast differentiation.
Collapse
Affiliation(s)
- Yali Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, China (Y.Y., L.M., D.W.)
| | - Yu Leng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
| | - Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
| | - Jie Mu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- College of Life Sciences and School of Pharmacy, Medical College, Qingdao University, China (J.M.)
| | - Lei Ma
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, China (Y.Y., L.M., D.W.)
| | - Lin Yin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
| | - Yu Zheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, China (Y.Z., Y. Lu, H.Z.)
| | - Yi Lu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, China (Y.Z., Y. Lu, H.Z.)
| | - Yuanming Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y. Li, X.Q.)
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y. Li, X.Q.)
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, China (Y.Z., Y. Lu, H.Z.)
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, China (Y.Y., L.M., D.W.)
- Shandong Provincial Institute of Cancer Prevention, Jinan, China (D.W.)
| |
Collapse
|
4
|
Lacueva-Aparicio A, Lindoso RS, Mihăilă SM, Giménez I. Role of extracellular matrix components and structure in new renal models in vitro. Front Physiol 2022; 13:1048738. [PMID: 36569770 PMCID: PMC9767975 DOI: 10.3389/fphys.2022.1048738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM), a complex set of fibrillar proteins and proteoglycans, supports the renal parenchyma and provides biomechanical and biochemical cues critical for spatial-temporal patterning of cell development and acquisition of specialized functions. As in vitro models progress towards biomimicry, more attention is paid to reproducing ECM-mediated stimuli. ECM's role in in vitro models of renal function and disease used to investigate kidney injury and regeneration is discussed. Availability, affordability, and lot-to-lot consistency are the main factors determining the selection of materials to recreate ECM in vitro. While simpler components can be synthesized in vitro, others must be isolated from animal or human tissues, either as single isolated components or as complex mixtures, such as Matrigel or decellularized formulations. Synthetic polymeric materials with dynamic and instructive capacities are also being explored for cell mechanical support to overcome the issues with natural products. ECM components can be used as simple 2D coatings or complex 3D scaffolds combining natural and synthetic materials. The goal is to recreate the biochemical signals provided by glycosaminoglycans and other signaling molecules, together with the stiffness, elasticity, segmentation, and dimensionality of the original kidney tissue, to support the specialized functions of glomerular, tubular, and vascular compartments. ECM mimicking also plays a central role in recent developments aiming to reproduce renal tissue in vitro or even in therapeutical strategies to regenerate renal function. Bioprinting of renal tubules, recellularization of kidney ECM scaffolds, and development of kidney organoids are examples. Future solutions will probably combine these technologies.
Collapse
Affiliation(s)
- Alodia Lacueva-Aparicio
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, Zaragoza, Spain
| | - Rafael Soares Lindoso
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ignacio Giménez
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain,School of Medicine, University of Zaragoza, Zaragoza, Spain,*Correspondence: Ignacio Giménez,
| |
Collapse
|
5
|
Song X, Yu Y, Leng Y, Ma L, Mu J, Wang Z, Xu Y, Zhu H, Qiu X, Li P, Li J, Wang D. Expanding tubular microvessels on stiff substrates with endothelial cells and pericytes from the same adult tissue. J Tissue Eng 2022; 13:20417314221125310. [PMID: 36171979 PMCID: PMC9511303 DOI: 10.1177/20417314221125310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/25/2022] [Indexed: 11/01/2022] Open
Abstract
Endothelial cells (ECs) usually form a monolayer on two-dimensional (2D) stiff substrates and a tubular structure with soft hydrogels. The coculture models using ECs and pericytes derived from different adult tissues or pluripotent stem cells cannot mimic tissue-specific microvessels due to vascular heterogeneity. Our study established a method for expanding tubular microvessels on 2D stiff substrates with ECs and pericytes from the same adult tissue. We isolated microvessels from adult rat subcutaneous soft connective tissue and cultured them in the custom-made tubular microvascular growth medium on 2D stiff substrates (TGM2D). TGM2D promoted adult microvessel growth for at least 4 weeks and maintained a tubular morphology, contrary to the EC monolayer in the commercial medium EGM2MV. Transcriptomic analysis showed that TGM2D upregulated angiogenesis and vascular morphogenesis while suppressing oxidation and lipid metabolic pathways. Our method can be applied to other organs for expanding organ-specific microvessels for tissue engineering.
Collapse
Affiliation(s)
- Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yali Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yu Leng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Ma
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Jie Mu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Pharmacy, Medical College, and Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao, China
| | - Zihan Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| |
Collapse
|