1
|
Padhi D, Kashyap S, Mohapatra RK, Dineshkumar R, Nayak M. Microalgae-based flue gas CO 2 sequestration for cleaner environment and biofuel feedstock production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35958-8. [PMID: 39888525 DOI: 10.1007/s11356-025-35958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Anthropogenic CO2 emissions are the prime cause of global warming and climate change, promoting researchers to develop suitable technologies to reduce carbon footprints. Among various CO2 sequestration technologies, microalgal-based methods are found to be promising due to their easier operation, environmental benefits, and simpler equipment requirements. Microalgae-based carbon capture and storage (CCS) technology is essential for addressing challenges related to the use of industrial-emitted flue gases. This review focuses on the literature concerning the microalgal application for CO2 sequestration. It highlights the primary physiochemical parameters that affect microalgal-based CO2 biofixation, including light exposure, microalgal strain, temperature, inoculum size, pH levels, mass transfer, CO2 concentration, flow rate, cultivation system, and mixing mechanisms. Moreover, the inhibition effect of different flue gas components including NOx, SOx, and Hg on growth kinetics is discussed to enhance the capacity of microalgal-based CO2 biofixation, along with deliberated challenges and prospects for future development. Overall, the review indicated microalgal-based flue gas CO2 fixation rates range from 80 mg L-1 day-1 to over 578 mg L-1 day-1, primarily influenced by physiochemical parameters and flue gas composition. This article summarizes the mechanisms and stages of microalgal-based CO2 sequestration and provides a comprehensive review based on international interest in this green technology.
Collapse
Affiliation(s)
- Diptymayee Padhi
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Shatakshi Kashyap
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Ranjan Kumar Mohapatra
- Department of Environmental and IT Convergence Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ramalingam Dineshkumar
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
2
|
Hollmann L, Blank LM, Grünberger A. Flow fermentation: microsystems for whole-cell bioproduction processes. Trends Biotechnol 2025:S0167-7799(24)00386-X. [PMID: 39890503 DOI: 10.1016/j.tibtech.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 02/03/2025]
Abstract
Industrial biotechnology utilizes whole cells for the production of value-added goods in large-scale bioreactors. The miniaturization of bioreactors has greatly contributed to the understanding and optimization of bioprocesses. However, microsystems for the production of value-added goods have thus far only been established in chemistry and biocatalysis/biotransformation but are rarely applied for whole-cell bioprocesses. Here, we discuss the fundamental and translational aspects of how microsystems could be used as production units for future whole-cell bioproduction processes. The characteristics and resulting advantages of microsystems are introduced and current production approaches are highlighted. Finally, we provide perspectives on establishing future whole-cell bioproduction processes at the microscale, here introduced as flow fermentation. Flow fermentation potentially enables entirely new bioprocesses and application fields.
Collapse
Affiliation(s)
- Lina Hollmann
- Institute of Process Engineering in Life Sciences, Microsystems in Bioprocess Engineering (MBVT), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| | - Alexander Grünberger
- Institute of Process Engineering in Life Sciences, Microsystems in Bioprocess Engineering (MBVT), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| |
Collapse
|
3
|
Modzelewska A, Jackowski M, Boutikos P, Lech M, Grabowski M, Krochmalny K, Martínez MG, Aragón-Briceño C, Arora A, Luo H, Fiori L, Xiong Q, Arshad MY, Trusek A, Pawlak-Kruczek H, Niedzwiecki L. Sustainable production of biohydrogen: Feedstock, pretreatment methods, production processes, and environmental impact. FUEL PROCESSING TECHNOLOGY 2024; 266:108158. [DOI: 10.1016/j.fuproc.2024.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Yu BS, Pyo S, Lee J, Han K. Microalgae: a multifaceted catalyst for sustainable solutions in renewable energy, food security, and environmental management. Microb Cell Fact 2024; 23:308. [PMID: 39543605 PMCID: PMC11566087 DOI: 10.1186/s12934-024-02588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
This review comprehensively examines the various applications of microalgae, focusing on their significant potential in producing biodiesel and hydrogen, serving as sustainable food sources, and their efficacy in treating both municipal and food-related wastewater. While previous studies have mainly focused on specific applications of microalgae, such as biofuel production or wastewater treatment, this review covers these applications comprehensively. It examines the potential for microalgae to be applied in various industrial sectors such as energy, food security, and environmental management. By bridging these different application areas, this review differs from previous studies in providing an integrated and multifaceted view of the industrial applications of microalgae. Since it is essential to increase the productivity of the process to utilize microalgae for various industrial applications, research trends in different microalgae cultivation processes, including the culture system (e.g., open ponds, closed ponds) or environmental conditions (e.g., pH, temperature, light intensity) to improve the productivity of biomass and valuable substances was firstly analyzed. In addition, microalgae cultivation technologies that can maximize the biomass and valuable substances productivity while limiting the potential for contamination that can occur when utilizing these systems have been described to maximize CO2 reduction. In conclusion, this review has provided a detailed analysis of current research findings and technological innovations, highlighting the important role of microalgae in addressing global challenges related to energy, food supply, and waste management. It has also provided valuable insights into future research directions and potential commercial applications in several bio-related industries, and illustrated how important continued exploration and development in this area is to realize the full potential of microalgae.
Collapse
Affiliation(s)
- Byung Sun Yu
- Department of biomedical Sciences, College of Bio-convergence, Dankook University, 31116, Dandae-ro 119, Dongnam-gu, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seonju Pyo
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kyudong Han
- Department of biomedical Sciences, College of Bio-convergence, Dankook University, 31116, Dandae-ro 119, Dongnam-gu, Cheonan, 31116, Republic of Korea.
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea.
| |
Collapse
|
5
|
Demirden SF, Erdogan B, Öncel DŞ, Oncel SS. Effect of culture hydrodynamics on Arthrospira platensis production using a single-use photobioreactor system through a CFD supported approach. Biotechnol Prog 2024; 40:e3480. [PMID: 38766884 DOI: 10.1002/btpr.3480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Laboratory scale conventional single-use bioreactor was used to investigate the effect of different stirrer speeds on the Arthrospira platensis (Spirulina platensis) culture. Experiments were handled in two steps. First step was the selection of the stirring speeds, which was simulated via using CFD, and the second was the long term cultivation with the selected speed. During 10 days of batches as the first step, under identical culture conditions, stirrer speed of 230 rpm gave higher results, compared to 130 and 70 rpm, with respect to dry biomass weight, absorbance value (AB) and chlorophyll-a concentration. Volumetric productivity during the growth phase of the cultures were calculated as 0.39 ± 0.03, 0.28 ± 0.01, and 0.19 ± 0.02 g L-1 d-1, from the fast to the slower speeds. According to the results a 17 day batch was handled with 230 rpm in order to monitor the effects on the culture. The culture reached a volumetric productivity of 0.33 ± 0.04 g L-1 d-1. Statistical analysis showed the significance of the parameters related with the stirring speed.
Collapse
Affiliation(s)
- S Furkan Demirden
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
| | - Barıs Erdogan
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
| | - Deniz Şenyay Öncel
- Department of Biomechanics, Institute of Health Sciences, Dokuz Eylül University, Izmir, Turkey
| | - Suphi S Oncel
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
| |
Collapse
|
6
|
De Baets J, De Paepe B, De Mey M. Delaying production with prokaryotic inducible expression systems. Microb Cell Fact 2024; 23:249. [PMID: 39272067 PMCID: PMC11401332 DOI: 10.1186/s12934-024-02523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Engineering bacteria with the purpose of optimizing the production of interesting molecules often leads to a decrease in growth due to metabolic burden or toxicity. By delaying the production in time, these negative effects on the growth can be avoided in a process called a two-stage fermentation. MAIN TEXT During this two-stage fermentation process, the production stage is only activated once sufficient cell mass is obtained. Besides the possibility of using external triggers, such as chemical molecules or changing fermentation parameters to induce the production stage, there is a renewed interest towards autoinducible systems. These systems, such as quorum sensing, do not require the extra interference with the fermentation broth to start the induction. In this review, we discuss the different possibilities of both external and autoinduction methods to obtain a two-stage fermentation. Additionally, an overview is given of the tuning methods that can be applied to optimize the induction process. Finally, future challenges and prospects of (auto)inducible expression systems are discussed. CONCLUSION There are numerous methods to obtain a two-stage fermentation process each with their own advantages and disadvantages. Even though chemically inducible expression systems are well-established, an increasing interest is going towards autoinducible expression systems, such as quorum sensing. Although these newer techniques cannot rely on the decades of characterization and applications as is the case for chemically inducible promoters, their advantages might lead to a shift in future inducible expression systems.
Collapse
Affiliation(s)
- Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
7
|
Nazloo EK, Danesh M, Sarrafzadeh MH, Moheimani NR, Ennaceri H. Biomass and hydrocarbon production from Botryococcus braunii: A review focusing on cultivation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171734. [PMID: 38508258 DOI: 10.1016/j.scitotenv.2024.171734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Botryococcus braunii has garnered significant attention in recent years due to its ability to produce high amounts of renewable hydrocarbons through photosynthesis. As the world shifts towards a greener future and seeks alternative sources of energy, the cultivation of B. braunii and the extraction of its hydrocarbons can potentially provide a viable solution. However, the development of a sustainable and cost-effective process for cultivating B. braunii is not without challenges. Compared to other microalgae, B. braunii grows very slowly, making it time-consuming and expensive to produce biomass. In response to these challenges, several efforts have been put into optimizing Botryococcus braunii cultivation systems to increase biomass growth and hydrocarbon production efficiency. This review presents a comparative analysis of different Botryococcus braunii cultivation systems, and the factors affecting the productivity of biomass and hydrocarbon in Botryococcus braunii are critically discussed. Attached microalgal growth offers several advantages that hold significant potential for enhancing the economic viability of microalgal fuels. Here, we propose that employing attached growth cultivation, coupled with the milking technique for hydrocarbon extraction, represents an efficient approach for generating renewable fuels from B. braunii. Nevertheless, further research is needed to ascertain the viability of large-scale implementation.
Collapse
Affiliation(s)
- Ehsan Khorshidi Nazloo
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Moslem Danesh
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Petroleum Drilling and Refining, Kurdistan Technical Institute Sulaimaniya, Iraq; Department of Biomedical Engineering, Qaiwan International University, Sulaimaniya, Iraq
| | - Mohammad-Hossein Sarrafzadeh
- UNESCO Chair on Water Reuse, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| |
Collapse
|
8
|
Barboza-Rodríguez R, Rodríguez-Jasso RM, Rosero-Chasoy G, Rosales Aguado ML, Ruiz HA. Photobioreactor configurations in cultivating microalgae biomass for biorefinery. BIORESOURCE TECHNOLOGY 2024; 394:130208. [PMID: 38113947 DOI: 10.1016/j.biortech.2023.130208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Microalgae, highly prized for their protein, lipid, carbohydrate, phycocyanin, and carotenoid-rich biomass, have garnered significant industrial attention in the context of third-generation (3G) biorefineries, seeking sustainable alternatives to non-renewable resources. Two primarily cultivation methods, open ponds and closed photobioreactors systems, have emerged. Open ponds, favored for their cost-effectiveness in large-scale industrial production, although lacking precise environmental control, contrast with closed photobioreactors, offering controlled conditions and enhanced biomass production at the laboratory scale. However, their high operational costs challenge large-scale deployment. This review comprehensively examines the strength, weakness, and typical designs of both outdoor and indoor microalgae cultivation systems, with an emphasis on their application in terms of biorefinery concept. Additionally, it incorporates techno-economic analyses, providing insights into the financial aspects of microalgae biomass production. These multifaceted insights, encompassing both technological and economic dimensions, are important as the global interest in harnessing microalgae's valuable resources continue to grow.
Collapse
Affiliation(s)
- Regina Barboza-Rodríguez
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| | - Gilver Rosero-Chasoy
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam L Rosales Aguado
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| |
Collapse
|
9
|
Teke GM, Anye Cho B, Bosman CE, Mapholi Z, Zhang D, Pott RWM. Towards industrial biological hydrogen production: a review. World J Microbiol Biotechnol 2023; 40:37. [PMID: 38057658 PMCID: PMC10700294 DOI: 10.1007/s11274-023-03845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
Increased production of renewable energy sources is becoming increasingly needed. Amidst other strategies, one promising technology that could help achieve this goal is biological hydrogen production. This technology uses micro-organisms to convert organic matter into hydrogen gas, a clean and versatile fuel that can be used in a wide range of applications. While biohydrogen production is in its early stages, several challenges must be addressed for biological hydrogen production to become a viable commercial solution. From an experimental perspective, the need to improve the efficiency of hydrogen production, the optimization strategy of the microbial consortia, and the reduction in costs associated with the process is still required. From a scale-up perspective, novel strategies (such as modelling and experimental validation) need to be discussed to facilitate this hydrogen production process. Hence, this review considers hydrogen production, not within the framework of a particular production method or technique, but rather outlines the work (bioreactor modes and configurations, modelling, and techno-economic and life cycle assessment) that has been done in the field as a whole. This type of analysis allows for the abstraction of the biohydrogen production technology industrially, giving insights into novel applications, cross-pollination of separate lines of inquiry, and giving a reference point for researchers and industrial developers in the field of biohydrogen production.
Collapse
Affiliation(s)
- G M Teke
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - B Anye Cho
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - C E Bosman
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Z Mapholi
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - D Zhang
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - R W M Pott
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
10
|
Buyel JF. Product safety aspects of plant molecular farming. Front Bioeng Biotechnol 2023; 11:1238917. [PMID: 37614627 PMCID: PMC10442644 DOI: 10.3389/fbioe.2023.1238917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
Plant molecular farming (PMF) has been promoted since the 1990s as a rapid, cost-effective and (most of all) safe alternative to the cultivation of bacteria or animal cells for the production of biopharmaceutical proteins. Numerous plant species have been investigated for the production of a broad range of protein-based drug candidates. The inherent safety of these products is frequently highlighted as an advantage of PMF because plant viruses do not replicate in humans and vice versa. However, a more nuanced analysis of this principle is required when considering other pathogens because toxic compounds pose a risk even in the absence of replication. Similarly, it is necessary to assess the risks associated with the host system (e.g., the presence of toxic secondary metabolites) and the production approach (e.g., transient expression based on bacterial infiltration substantially increases the endotoxin load). This review considers the most relevant host systems in terms of their toxicity profile, including the presence of secondary metabolites, and the risks arising from the persistence of these substances after downstream processing and product purification. Similarly, we discuss a range of plant pathogens and disease vectors that can influence product safety, for example, due to the release of toxins. The ability of downstream unit operations to remove contaminants and process-related toxic impurities such as endotoxins is also addressed. This overview of plant-based production, focusing on product safety aspects, provides recommendations that will allow stakeholders to choose the most appropriate strategies for process development.
Collapse
Affiliation(s)
- J. F. Buyel
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
11
|
Borucinska E, Zamojski P, Grodzki W, Blaszczak U, Zglobicka I, Zielinski M, Kurzydlowski KJ. Degradation of Polymethylmethacrylate (PMMA) Bioreactors Used for Algal Cultivation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4873. [PMID: 37445187 DOI: 10.3390/ma16134873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
This paper depicts characteristics of degradation of walls of bioreactors made of polymethylmethacrylate (PMMA) which was used to culture algae. The degradation processes take place stimulated by lighting of external surface and interaction with cultured species on internal surface. Results presented are representative for degradation of a bioreactor tube after the 4-year cultivation of Chlorella sp. Microscopic observations, roughness and transmission tests showed that changes have occurred on the inner surface. The result of use is a decrease in transmission and an increase in roughness. Microscopic observations showed that particles remained after culture, especially in cracks.
Collapse
Affiliation(s)
- Ewa Borucinska
- Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Przemyslaw Zamojski
- Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Wojciech Grodzki
- Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Urszula Blaszczak
- Faculty of Electrical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Izabela Zglobicka
- Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Marcin Zielinski
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | | |
Collapse
|
12
|
Laboratory- and Pilot-Scale Cultivation of Tetraselmis striata to Produce Valuable Metabolic Compounds. Life (Basel) 2023; 13:life13020480. [PMID: 36836837 PMCID: PMC9962084 DOI: 10.3390/life13020480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Marine microalgae are considered an important feedstock of multiple valuable metabolic compounds of high biotechnological potential. In this work, the marine microalga Tetraselmis striata was cultivated in different scaled photobioreactors (PBRs). Initially, experiments were performed using two different growth substrates (a modified F/2 and the commercial fertilizer Nutri-Leaf (30% TN-10% P-10% K)) to identify the most efficient and low-cost growth medium. These experiments took place in 4 L glass aquariums at the laboratory scale and in a 9 L vertical tubular pilot column. Enhanced biomass productivities (up to 83.2 mg L-1 d-1) and improved biomass composition (up to 41.8% d.w. proteins, 18.7% d.w. carbohydrates, 25.7% d.w. lipids and 4.2% d.w. total chlorophylls) were found when the fertilizer was used. Pilot-scale experiments were then performed using Nutri-Leaf as a growth medium in different PBRs: (a) a paddle wheel, open, raceway pond of 40 L, and (b) a disposable polyethylene (plastic) bag of 280 L working volume. Biomass growth and composition were also monitored at the pilot scale, showing that high-quality biomass can be produced, with important lipids (up to 27.6% d.w.), protein (up to 45.3% d.w.), carbohydrate (up to 15.5% d.w.) and pigment contents (up to 4.2% d.w. total chlorophylls), and high percentages of eicosapentaenoic acid (EPA). The research revealed that the strain successfully escalated in larger volumes and the biochemical composition of its biomass presents high commercial interest and could potentially be used as a feed ingredient.
Collapse
|
13
|
Jung CHG, Waldeck P, Sykora S, Braune S, Petrick I, Küpper JH, Jung F. Influence of Different Light-Emitting Diode Colors on Growth and Phycobiliprotein Generation of Arthrospira platensis. Life (Basel) 2022; 12:895. [PMID: 35743926 PMCID: PMC9225284 DOI: 10.3390/life12060895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Light-emitting diodes (LED) can be utilized as tailorable artificial light sources for the cultivation of cyanobacteria such as Arthrospira platensis (AP). To study the influence of different LED light colors on phototrophic growth and biomass composition, AP was cultured in closed bioreactors and exposed to red, green, blue, or white LED lights. The illumination with red LED light resulted in the highest cell growth and highest cell densities compared to all other light sources (order of cell densities: red > white > green > blue LED light). In contrast, the highest phycocyanin concentrations were found when AP was cultured under blue LED light (e.g., order of concentrations: blue > white > red > green LED light). LED-blue light stimulated the accumulation of nitrogen compounds in the form of phycobiliproteins at the expense of cell growth. The results of the study revealed that exposure to different LED light colors can improve the quality and quantity of the biomass gained in AP cultures.
Collapse
Affiliation(s)
- Conrad H. G. Jung
- Carbon Biotech Social Enterprise AG, 01968 Senftenberg, Germany; (C.H.G.J.); (J.-H.K.)
| | - Peter Waldeck
- Institute of Materials Chemistry, Thermodynamics, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; (P.W.); (I.P.)
| | - Shadi Sykora
- Experimental Physics, Mechanical Engineering, Electrical and Energy Systems, Brandenburg University of Technology, 01968 Senftenberg, Germany;
| | - Steffen Braune
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany;
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Ingolf Petrick
- Institute of Materials Chemistry, Thermodynamics, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; (P.W.); (I.P.)
| | - Jan-Heiner Küpper
- Carbon Biotech Social Enterprise AG, 01968 Senftenberg, Germany; (C.H.G.J.); (J.-H.K.)
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany;
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany;
| |
Collapse
|
14
|
Mass Cultivation of Microalgae: I. Experiences with Vertical Column Airlift Photobioreactors, Diatoms and CO2 Sequestration. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
From 2015 to 2021, we optimized mass cultivation of diatoms in our own developed vertical column airlift photobioreactors using natural and artificial light (LEDs). The project took place at the ferrosilicon producer Finnfjord AS in North Norway as a joint venture with UiT—The Arctic University of Norway. Small (0.1–6–14 m3) reactors were used for initial experiments and to produce inoculum cultures while upscaling experiments took place in a 300 m3 reactor. We here argue that species cultivated in reactors should be large since biovolume specific self-shadowing of light can be lower for large vs. small cells. The highest production, 1.28 cm3 L−1 biovolume (0.09–0.31 g DW day−1), was obtained with continuous culture at ca. 19% light utilization efficiency and 34% CO2 uptake. We cultivated 4–6 months without microbial contamination or biofouling, and this we argue was due to a natural antifouling (anti-biofilm) agent in the algae. In terms of protein quality all essential amino acids were present, and the composition and digestibility of the fatty acids were as required for feed ingredients. Lipid content was ca. 20% of ash-free DW with high EPA levels, and omega-3 and amino acid content increased when factory fume was added. The content of heavy metals in algae cultivated with fume was well within the accepted safety limits. Organic pollutants (e.g., dioxins and PCBs) were below the limits required by the European Union food safety regulations, and bioprospecting revealed several promising findings.
Collapse
|