1
|
Dumjahn L, Wein P, Molloy EM, Scherlach K, Trottmann F, Meisinger PR, Judd LM, Pidot SJ, Stinear TP, Richter I, Hertweck C. Dual-use virulence factors of the opportunistic pathogen Chromobacterium haemolyticum mediate hemolysis and colonization. mBio 2025; 16:e0360524. [PMID: 40178269 PMCID: PMC12077216 DOI: 10.1128/mbio.03605-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Chromobacterium haemolyticum is an environmental bacterium that can cause severe and fatal opportunistic infections in humans and animals. Although C. haemolyticum is characterized by its strong β-hemolytic activity, the molecular basis of this phenotype has remained elusive over the more than 15 years since the species was first described. Herein, we report a family of cyclic lipodepsipeptides, the jagaricins, that are responsible for the potent hemolytic activity of C. haemolyticum. Comparative genomics of C. haemolyticum strains revealed a completely conserved gene locus (hml) encoding a nonribosomal peptide synthetase. Metabolic profiling of C. haemolyticum DSM 19808 identified a suite of cyclic lipodepsipeptides as the products, with the three main congeners (jagaricin A-C) being elucidated by a combination of tandem mass spectrometry, chemical derivatization, and nuclear magnetic resonance spectroscopy. Significantly, a C. haemolyticum hml deletion mutant is devoid of hemolytic activity. Moreover, purified jagaricins are hemolytic at low micromolar concentrations in an erythrocyte lysis assay. Further bioassays demonstrated that the cyclic lipodepsipeptides are crucial for the biofilm-forming and swarming behavior of C. haemolyticum. Matrix-assisted laser desorption ionization mass spectrometry imaging showed that primarily jagaricin B and C are involved in these processes in vitro. Our data shed light on the bioactivities of jagaricins, specialized metabolites that likely contribute to both successful niche colonization and the virulence potential of C. haemolyticum.IMPORTANCEDespite the rising incidence of Chromobacterium haemolyticum as a serious opportunistic pathogen, there is limited information on whether the competitive traits that ensure its survival in its freshwater niche also influence host infection. We reveal that C. haemolyticum produces specialized metabolites that not only cause its pronounced hemolytic phenotype but are also crucial for biofilm formation and swarming motility. These results exemplify a case of coincidental evolution, wherein the selective pressures encountered in a primary environmental niche drive the evolution of a trait impacting virulence. This knowledge provides a foundation for the development of antivirulence therapies against the emerging pathogen C. haemolyticum.
Collapse
Affiliation(s)
- Leo Dumjahn
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Philippe R. Meisinger
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Louise M. Judd
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
2
|
Fermentation in Minimal Media and Fungal Elicitation Enhance Violacein and Deoxyviolacein Production in Two Janthinobacterium Strains. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Violacein and its biosynthesis by-product deoxyviolacein are valuable natural pigments with different biological activities. Various efforts have been made to enhance violacein and deoxyviolacein production in microbes. However, the effect of different culture media, agitation, and fungal elicitation on biosynthesis in Janthinobacterium has not been evaluated. In this study, the effect of eight different culture media, agitation, and fungal elicitation by Agaricus bisporus on violacein and deoxviolacein production in Janthinobacterium agaricidamnosum DSM 9628 and Janthinobacterium lividum DSM 1552 were examined. The results showed that violacein and deoxviolacein are produced at high-levels when Janthinobacterium is cultivated in minimal media such as Davis minimal broth with glycerol (DMBgly), shipworm basal medium (SBM), and MM9 media. A 50-fold increase was observed in violacein production when Janthinobacterium was cultivated in these media compared to cultivation in Luria–Bertani (LB), nutrient broth (NB), and King’s B (KB). Agitation reduces violacein and deoxyviolacein production, while fungal elicitation decreases violacein but increases deoxyviolacein when Janthinobacterium is cultured in KB media, SBM, and modified SBM (MSBM). An antibacterial assay using various pathogenic bacteria showed that violacein and deoxyviolacein extracted from Janthinobacterium are effective against both Gram-positive and Gram-negative pathogens, confirming their functionality as antibacterial agents. The findings suggest that cultivation in minimal media and fungal elicitation might invoke a stress response, enhancing the production of violacein and deoxviolacein in Janthinobacterium.
Collapse
|