1
|
Zhang H, Zha S. The dynamics and regulation of PARP1 and PARP2 in response to DNA damage and during replication. DNA Repair (Amst) 2024; 140:103690. [PMID: 38823186 DOI: 10.1016/j.dnarep.2024.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
DNA strand breaks activate Poly(ADP-ribose) polymerase (PARP) 1 and 2, which use NAD+ as the substrate to covalently conjugate ADP-ribose on themselves and other proteins (e.g., Histone) to promote chromatin relaxation and recruit additional DNA repair factors. Enzymatic inhibitors of PARP1 and PARP2 (PARPi) are promising cancer therapy agents that selectively target BRCA1- or BRCA2- deficient cancers. As immediate early responders to DNA strand breaks with robust activities, PARP1 and PARP2 normally form transient foci (<10 minutes) at the micro-irradiation-induced DNA lesions. In addition to enzymatic inhibition, PARPi also extend the presence of PARP1 and PARP2 at DNA lesions, including at replication forks, where they may post a physical block for subsequent repair and DNA replication. The dynamic nature of PARP1 and PARP2 foci made live cell imaging a unique platform to detect subtle changes and the functional interaction among PARP1, PARP2, and their regulators. Recent imaging studies have provided new understandings of the biological consequence of PARP inhibition and uncovered functional interactions between PARP1 and PARP2 and new regulators (e.g., histone poly(ADP-ribosylation) factor). Here, we review recent advances in dissecting the temporal and spatial Regulation of PARP1 and PARP2 at DNA lesions and discuss their physiological implications on both cancer and normal cells.
Collapse
Affiliation(s)
- Hanwen Zhang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA; Department of Pathology and Cell Biology, Herbert Irvine Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA; Division of Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA; Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, USA.
| |
Collapse
|
2
|
Yin Z, Chen E, Cai X, Gong E, Li Y, Xu C, Ye Z, Cao Z, Pan J. Baicalin attenuates XRCC1-mediated DNA repair to enhance the sensitivity of lung cancer cells to cisplatin. J Recept Signal Transduct Res 2021; 42:215-224. [PMID: 33719846 DOI: 10.1080/10799893.2021.1892132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Baicalin plays important roles in different types of cancer. A previous report showed that baicalin attenuates cisplatin resistance in lung cancer. However, its mechanism remains unclear. In this study, we investigated the effect and mechanism of baicalin on DNA repair and sensitivity of lung cancer cells to cisplatin. A549 and A549/DPP cells were treated with baicalin and cisplatin. A549/DPP cells were transfected with XRCC1 and siXRCC1. Cell viability and DNA damage were detected by MTT and comet assay. Apoptosis rate and cell cycle were detected by flow cytometry assay. The expressions of Bax, Bcl-2, and Cyclin D1 were detected by western blot. XRCC1 expression was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot. Baicalin and cisplatin decreased cell viability in A549 and A549/DPP cells in dose-dependent manner. Baicalin enhanced the effect of cisplatin on promoting apoptosis, arresting cell on S stage and triggering DNA damage accompanied with the upregulation of Bcl-2-associated X protein (Bax) and downregulation of B-cell lymphoma 2 (Bcl-2) and Cyclin D1 in A549/DPP cells. Moreover, baicalin promoted the inhibitory effect of cisplatin on XRCC1 expression in A549 and A549/DPP cells. However, the synthetic effects of baicalin and cisplatin on A549/DPP cells were partially inhibited by XRCC1 overexpression and promoted by XRCC1 knockdown. This study demonstrates that baicalin interferes with XRCC1-mediated cellar DNA repair to sensitize lung cancer cells to cisplatin.
Collapse
Affiliation(s)
- Zhangyong Yin
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Enguo Chen
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Affiliated with Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaoping Cai
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Enhui Gong
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Yuling Li
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Cunlai Xu
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Zaiting Ye
- Department of Radiology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Zhuo Cao
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,People's Hospital of Longquan, Longquan, China
| | - Jiongwei Pan
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
3
|
Avoid the trap: Targeting PARP1 beyond human malignancy. Cell Chem Biol 2021; 28:456-462. [PMID: 33657415 DOI: 10.1016/j.chembiol.2021.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/22/2020] [Accepted: 02/03/2021] [Indexed: 01/24/2023]
Abstract
PARP1 is a poly(ADP-ribose) polymerase (PARP) enzyme that plays a critical role in regulating DNA damage response. The main enzymatic function of PARP1 is to catalyze a protein post-translational modification known as poly(ADP-ribosyl)ation (PARylation). Human cancers with homologous recombination deficiency are highly sensitive to PARP1 inhibitors. PARP1 is aberrantly activated in many non-oncological diseases, leading to the excessive NAD+ depletion and PAR formation, thus causing cell death and tissue damage. PARP1 deletion offers a profound protective effect in the relevant animal models. However, many of the current PARP1 inhibitors also induce PARP1 trapping, which drives subsequent DNA damage, innate immune response and cytotoxicity. This minireview provides an overview of the basic biology of PARP1 trapping, and its implications in disease. Furthermore, we also discuss the recent development of PARP1 PROTAC compounds, and their utility as "non-trapping" PARP1 degraders for the potential amelioration of non-oncological diseases driven by aberrant PARP1 activation.
Collapse
|
4
|
Peng Y, Pei H. DNA alkylation lesion repair: outcomes and implications in cancer chemotherapy. J Zhejiang Univ Sci B 2021; 22:47-62. [PMID: 33448187 DOI: 10.1631/jzus.b2000344] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alkylated DNA lesions, induced by both exogenous chemical agents and endogenous metabolites, represent a major form of DNA damage in cells. The repair of alkylation damage is critical in all cells because such damage is cytotoxic and potentially mutagenic. Alkylation chemotherapy is a major therapeutic modality for many tumors, underscoring the importance of the repair pathways in cancer cells. Several different pathways exist for alkylation repair, including base excision and nucleotide excision repair, direct reversal by methyl-guanine methyltransferase (MGMT), and dealkylation by the AlkB homolog (ALKBH) protein family. However, maintaining a proper balance between these pathways is crucial for the favorable response of an organism to alkylating agents. Here, we summarize the progress in the field of DNA alkylation lesion repair and describe the implications for cancer chemotherapy.
Collapse
Affiliation(s)
- Yihan Peng
- Department of Biochemistry and Molecular Medicine, the George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.,GW Cancer Center, the George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Huadong Pei
- Department of Biochemistry and Molecular Medicine, the George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA. .,GW Cancer Center, the George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA.
| |
Collapse
|
5
|
Kumar M, Jaiswal RK, Yadava PK, Singh RP. An assessment of poly (ADP-ribose) polymerase-1 role in normal and cancer cells. Biofactors 2020; 46:894-905. [PMID: 33098603 DOI: 10.1002/biof.1688] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) is a superfamily of 18 proteins characterized by the PARP homology domain, the catalytic domain. This catalytic domain helps in the ADP-ribosylation of various acceptor proteins using nicotinamide adenine dinucleotide (NAD+) as a donor for ADP-ribose. PARP-1 and PARP-2 carry out 80% of poly-ADP-ribosylation of cellular protein. Hence, their combined knockout results in embryonic lethality of mice. PARP-1 consists of three major domains, namely, DNA binding domain, automodification domain, and a catalytic domain. These domains further consist of subdomains and motifs, which helps PARP-1 in a diverse function. PARP-1 is mainly involved in DNA damage detection and repair, but emerging evidence suggests its role in many other functions such as DNA synthesis, replication, apoptosis, necrosis, and cancer progression. Herein, we review the current state of the PARP-1 role in DNA damage repair and other biological processes including epithelial to mesenchymal transition (EMT). We have also observed the role of PARP-1 in modulating EMT regulators like E-cadherin, Vimentin, Claudin-1, Snail, Smad-4, Twist-1, and β-catenin. Here, we have also attempted to relate the role of PARP-1 in EMT of cancer cells.
Collapse
Affiliation(s)
- Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Pramod K Yadava
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Eckelmann BJ, Bacolla A, Wang H, Ye Z, Guerrero EN, Jiang W, El-Zein R, Hegde ML, Tomkinson AE, Tainer J, Mitra S. XRCC1 promotes replication restart, nascent fork degradation and mutagenic DNA repair in BRCA2-deficient cells. NAR Cancer 2020; 2:zcaa013. [PMID: 32776008 PMCID: PMC7397735 DOI: 10.1093/narcan/zcaa013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination/end joining (HR/HEJ)-deficient cancers with BRCA mutations utilize alternative DNA double-strand break repair pathways, particularly alternative non-homologous end joining or microhomology-mediated end joining (alt-EJ/MMEJ) during S and G2 cell cycle phases. Depletion of alt-EJ factors, including XRCC1, PARP1 and POLQ, is synthetically lethal with BRCA2 deficiency; yet, XRCC1 roles in HR-deficient cancers and replication stress are enigmatic. Here, we show that after replication stress, XRCC1 forms an active repair complex with POLQ and MRE11 that supports alt-EJ activity in vitro. BRCA2 limits XRCC1 recruitment and repair complex formation to suppress alt-EJ at stalled forks. Without BRCA2 fork protection, XRCC1 enables cells to complete DNA replication at the expense of increased genome instability by promoting MRE11-dependent fork resection and restart. High XRCC1 and MRE11 gene expression negatively impacts Kaplan-Meier survival curves and hazard ratios for HR-deficient breast cancer patients in The Cancer Genome Atlas. The additive effects of depleting both BRCA2 and XRCC1 indicate distinct pathways for replication restart. Our collective data show that XRCC1-mediated processing contributes to replication fork degradation, replication restart and chromosome aberrations in BRCA2-deficient cells, uncovering new roles of XRCC1 and microhomology-mediated repair mechanisms in HR-deficient cancers, with implications for chemotherapeutic strategies targeting POLQ and PARP activities.
Collapse
Affiliation(s)
- Bradley J Eckelmann
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Albino Bacolla
- Departments of Cancer Biology and Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zu Ye
- Departments of Cancer Biology and Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erika N Guerrero
- Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Wei Jiang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518036, China
| | - Randa El-Zein
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics & Microbiology, and the University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - John A Tainer
- Departments of Cancer Biology and Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
7
|
|
8
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
9
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
10
|
Orta ML, Pastor N, Burgos-Morón E, Domínguez I, Calderón-Montaño JM, Huertas Castaño C, López-Lázaro M, Helleday T, Mateos S. Zebularine induces replication-dependent double-strand breaks which are preferentially repaired by homologous recombination. DNA Repair (Amst) 2017; 57:116-124. [PMID: 28732309 DOI: 10.1016/j.dnarep.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022]
Abstract
Zebularine is a second-generation, highly stable hydrophilic inhibitor of DNA methylation with oral bioavailability that preferentially target cancer cells. It acts primarily as a trap for DNA methyl transferases (DNMTs) protein by forming covalent complexes between DNMT protein and zebularine-substrate DNA. It's well documented that replication-blocking DNA lesions can cause replication fork collapse and thereby to the formation of DNA double-strand breaks (DSB). DSB are dangerous lesions that can lead to potentially oncogenic genomic rearrangements or cell death. The two major pathways for repair of DSB are non-homologous end joining (NHEJ) and homologous recombination (HR). Recently, multiple functions for the HR machinery have been identified at arrested forks. Here we investigate in more detail the importance of the lesions induced by zebularine in terms of DNA damage and cytotoxicity as well as the role of HR in the repair of these lesions. When we examined the contribution of NHEJ and HR in the repair of DSB induced by zebularine we found that these breaks were preferentially repaired by HR. Also we show that the production of DSB is dependent on active replication. To test this, we determined chromosome damage by zebularine while transiently inhibiting DNA synthesis. Here we report that cells deficient in single-strand break (SSB) repair are hypersensitive to zebularine. We have observed more DSB induced by zebularine in XRCC1 deficient cells, likely to be the result of conversion of SSB into toxic DSB when encountered by a replication fork. Furthermore we demonstrate that HR is required for the repair of these breaks. Overall, our data suggest that zebularine induces replication-dependent DSB which are preferentially repaired by HR.
Collapse
Affiliation(s)
- Manuel Luis Orta
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain,.
| | - Nuria Pastor
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | - Estefanía Burgos-Morón
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, c/Professor García González, No. 2, 41012, Seville, Spain
| | - Inmaculada Domínguez
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | - José Manuel Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, c/Professor García González, No. 2, 41012, Seville, Spain
| | - Carlos Huertas Castaño
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, c/Professor García González, No. 2, 41012, Seville, Spain
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17121, Stockholm, Sweden
| | - Santiago Mateos
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain,.
| |
Collapse
|
11
|
Abstract
Cells are exposed to various endogenous and exogenous insults that induce DNA damage, which, if unrepaired, impairs genome integrity and leads to the development of various diseases, including cancer. Recent evidence has implicated poly(ADP-ribose) polymerase 1 (PARP1) in various DNA repair pathways and in the maintenance of genomic stability. The inhibition of PARP1 is therefore being exploited clinically for the treatment of various cancers, which include DNA repair-deficient ovarian, breast and prostate cancers. Understanding the role of PARP1 in maintaining genome integrity is not only important for the design of novel chemotherapeutic agents, but is also crucial for gaining insights into the mechanisms of chemoresistance in cancer cells. In this Review, we discuss the roles of PARP1 in mediating various aspects of DNA metabolism, such as single-strand break repair, nucleotide excision repair, double-strand break repair and the stabilization of replication forks, and in modulating chromatin structure.
Collapse
|
12
|
Abbotts R, Wilson DM. Coordination of DNA single strand break repair. Free Radic Biol Med 2017; 107:228-244. [PMID: 27890643 PMCID: PMC5443707 DOI: 10.1016/j.freeradbiomed.2016.11.039] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022]
Abstract
The genetic material of all organisms is susceptible to modification. In some instances, these changes are programmed, such as the formation of DNA double strand breaks during meiotic recombination to generate gamete variety or class switch recombination to create antibody diversity. However, in most cases, genomic damage is potentially harmful to the health of the organism, contributing to disease and aging by promoting deleterious cellular outcomes. A proportion of DNA modifications are caused by exogenous agents, both physical (namely ultraviolet sunlight and ionizing radiation) and chemical (such as benzopyrene, alkylating agents, platinum compounds and psoralens), which can produce numerous forms of DNA damage, including a range of "simple" and helix-distorting base lesions, abasic sites, crosslinks and various types of phosphodiester strand breaks. More significant in terms of frequency are endogenous mechanisms of modification, which include hydrolytic disintegration of DNA chemical bonds, attack by reactive oxygen species and other byproducts of normal cellular metabolism, or incomplete or necessary enzymatic reactions (such as topoisomerases or repair nucleases). Both exogenous and endogenous mechanisms are associated with a high risk of single strand breakage, either produced directly or generated as intermediates of DNA repair. This review will focus upon the creation, consequences and resolution of single strand breaks, with a particular focus on two major coordinating repair proteins: poly(ADP-ribose) polymerase 1 (PARP1) and X-ray repair cross-complementing protein 1 (XRCC1).
Collapse
Affiliation(s)
- Rachel Abbotts
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
13
|
Khoronenkova SV, Dianov GL. ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc Natl Acad Sci U S A 2015; 112:3997-4002. [PMID: 25775545 PMCID: PMC4386361 DOI: 10.1073/pnas.1416031112] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA single-strand breaks (SSBs) arise as a consequence of spontaneous DNA instability and are also formed as DNA repair intermediates. Their repair is critical because they otherwise terminate gene transcription and generate toxic DNA double-strand breaks (DSBs) on replication. To prevent the formation of DSBs, SSB repair must be completed before DNA replication. To accomplish this, cells should be able to detect unrepaired SSBs, and then delay cell cycle progression to allow more time for repair; however, to date there is no evidence supporting the coordination of SSB repair and replication in human cells. Here we report that ataxia-telangiectasia mutated kinase (ATM) plays a major role in restricting the replication of SSB-containing DNA and thus prevents DSB formation. We show that ATM is activated by SSBs and coordinates their repair with DNA replication. SSB-mediated ATM activation is followed by a G1 cell cycle delay that allows more time for repair and thus prevents the replication of damaged DNA and DSB accrual. These findings establish an unanticipated role for ATM in the signaling of DNA SSBs and provide important insight into the molecular defects leading to genetic instability in patients with ataxia-telangiectasia.
Collapse
Affiliation(s)
- Svetlana V Khoronenkova
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom; and Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Grigory L Dianov
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom; and
| |
Collapse
|
14
|
Interaction with OGG1 is required for efficient recruitment of XRCC1 to base excision repair and maintenance of genetic stability after exposure to oxidative stress. Mol Cell Biol 2015; 35:1648-58. [PMID: 25733688 DOI: 10.1128/mcb.00134-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
XRCC1 is an essential protein required for the maintenance of genomic stability through its implication in DNA repair. The main function of XRCC1 is associated with its role in the single-strand break (SSB) and base excision repair (BER) pathways that share several enzymatic steps. We show here that the polymorphic XRCC1 variant R194W presents a defect in its interaction with the DNA glycosylase OGG1 after oxidative stress. While proficient for single-strand break repair (SSBR), this variant does not colocalize with OGG1, reflecting a defect in its involvement in BER. Consistent with a role of XRCC1 in the coordination of the BER pathway, induction of oxidative base damage in XRCC1-deficient cells complemented with the R194W variant results in increased genetic instability as revealed by the accumulation of micronuclei. These data identify a specific molecular role for the XRCC1-OGG1 interaction in BER and provide a model for the effects of the R194W variant identified in molecular cancer epidemiology studies.
Collapse
|
15
|
Orta ML, Höglund A, Calderón-Montaño JM, Domínguez I, Burgos-Morón E, Visnes T, Pastor N, Ström C, López-lázaro M, Helleday T. The PARP inhibitor Olaparib disrupts base excision repair of 5-aza-2'-deoxycytidine lesions. Nucleic Acids Res 2014; 42:9108-20. [PMID: 25074383 PMCID: PMC4132747 DOI: 10.1093/nar/gku638] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Decitabine (5-aza-2′-deoxycytidine, 5-azadC) is used in the treatment of Myelodysplatic syndrome (MDS) and Acute Myeloid Leukemia (AML). Its mechanism of action is thought to involve reactivation of genes implicated in differentiation and transformation, as well as induction of DNA damage by trapping DNA methyltranferases (DNMT) to DNA. We demonstrate for the first time that base excision repair (BER) recognizes 5-azadC-induced lesions in DNA and mediates repair. We find that BER (XRCC1) deficient cells are sensitive to 5-azadC and display an increased amount of DNA single- and double-strand breaks. The XRCC1 protein co-localizes with DNMT1 foci after 5-azadC treatment, suggesting a novel and specific role of XRCC1 in the repair of trapped DNMT1. 5-azadC-induced DNMT foci persist in XRCC1 defective cells, demonstrating a role for XRCC1 in repair of 5-azadC-induced DNA lesions. Poly (ADP-ribose) polymerase (PARP) inhibition prevents XRCC1 relocation to DNA damage sites, disrupts XRCC1–DNMT1 co-localization and thereby efficient BER. In a panel of AML cell lines, combining 5-azadC and Olaparib cause synthetic lethality. These data suggest that PARP inhibitors can be used in combination with 5-azadC to improve treatment of MDS and AML.
Collapse
Affiliation(s)
- Manuel Luis Orta
- Department of Cell Biology, Faculty of Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21 Stockholm, Sweden
| | - Andreas Höglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21 Stockholm, Sweden
| | - José Manuel Calderón-Montaño
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21 Stockholm, Sweden Department of Pharmacology, Faculty of Pharmacy, University of Seville, c/Professor García González, No. 2, 41012 Seville, Spain
| | - Inmaculada Domínguez
- Department of Cell Biology, Faculty of Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | - Estefanía Burgos-Morón
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, c/Professor García González, No. 2, 41012 Seville, Spain
| | - Torkild Visnes
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21 Stockholm, Sweden
| | - Nuria Pastor
- Department of Cell Biology, Faculty of Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | - Cecilia Ström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21 Stockholm, Sweden
| | - Miguel López-lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, c/Professor García González, No. 2, 41012 Seville, Spain
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21 Stockholm, Sweden
| |
Collapse
|
16
|
Sultana R, Abdel-Fatah T, Perry C, Moseley P, Albarakti N, Mohan V, Seedhouse C, Chan S, Madhusudan S. Ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. PLoS One 2013; 8:e57098. [PMID: 23451157 PMCID: PMC3581581 DOI: 10.1371/journal.pone.0057098] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/17/2013] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Ataxia telangiectasia mutated and Rad3 Related (ATR) protein kinase is a key sensor of single-stranded DNA associated with stalled replication forks and repair intermediates generated during DNA repair. XRCC1 is a critical enzyme in single strand break repair and base excision repair. XRCC1-LIG3 complex is also an important contributor to the ligation step of the nucleotide excision repair response. METHODS In the current study, we investigated synthetic lethality in XRCC1 deficient and XRCC1 proficient Chinese Hamster ovary (CHO) and human ovarian cancer cells using ATR inhibitors (NU6027). In addition, we also investigated the ability of ATR inhibitors to potentiate cisplatin cytotoxicity in XRCC1 deficient and XRCC1 proficient CHO and human cancer cells. Clonogenic assays, alkaline COMET assays, γH2AX immunocytochemistry, FACS for cell cycle as well as FITC-annexin V flow cytometric analysis were performed. RESULTS ATR inhibition is synthetically lethal in XRCC1 deficient cells as evidenced by increased cytotoxicity, accumulation of double strand DNA breaks, G2/M cell cycle arrest and increased apoptosis. Compared to cisplatin alone, combination of cisplatin and ATR inhibitor results in enhanced cytotoxicity in XRCC1 deficient cells compared to XRCC1 proficient cells. CONCLUSIONS Our data provides evidence that ATR inhibition is suitable for synthetic lethality application and cisplatin chemopotentiation in XRCC1 deficient ovarian cancer cells.
Collapse
Affiliation(s)
- Rebeka Sultana
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Tarek Abdel-Fatah
- Department of Clinical Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Christina Perry
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Paul Moseley
- Department of Clinical Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Nada Albarakti
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Vivek Mohan
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Claire Seedhouse
- Academic Haematology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Stephen Chan
- Department of Clinical Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
17
|
Abstract
Base excision repair (BER) is a frontline repair system that is responsible for maintaining genome integrity and thus preventing premature aging, cancer and many other human diseases by repairing thousands of DNA lesions and strand breaks continuously caused by endogenous and exogenous mutagens. This fundamental and essential function of BER not only necessitates tight control of the continuous availability of basic components for fast and accurate repair, but also requires temporal and spatial coordination of BER and cell cycle progression to prevent replication of damaged DNA. The major goal of this review is to critically examine controversial and newly emerging questions about mammalian BER pathways, mechanisms regulating BER capacity, BER responses to DNA damage and their links to checkpoint control of DNA replication.
Collapse
Affiliation(s)
- Grigory L Dianov
- Department of Oncology, Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
18
|
Abdel-Fatah T, Sultana R, Abbotts R, Hawkes C, Seedhouse C, Chan S, Madhusudan S. Clinicopathological and functional significance of XRCC1 expression in ovarian cancer. Int J Cancer 2012; 132:2778-86. [PMID: 23225521 DOI: 10.1002/ijc.27980] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/19/2012] [Indexed: 01/23/2023]
Abstract
X-ray repair cross-complementing gene 1 (XRCC1) is essential for DNA base excision repair, single strand break repair and nucleotide excision repair. We investigated clinicopathological and functional significance of XRCC1 expression in ovarian cancers. XRCC1 protein expression was evaluated in 195 consecutive human ovarian cancers and correlated with clinicopathological variables and survival outcomes. Functional preclinical studies were conducted in a panel of XRCC1 deficient and proficient Chinese hamster and Human cancer cells for cisplatin chemosensitivity. Clonogenic assay, neutral COMET assay, γH2AX immunocytochemistry and flow cytometric analyses were performed in cells. In ovarian cancer, 48% of the tumors were positive for XRCC1 expression and significantly associated with higher stage (p = 0.006), serous type tumors (p = 0.008), suboptimal de-bulking (p = 0.004) and platinum resistance (p < 0.0001). Positive XRCC1 had twofold increase of risk of death (p = 0.007) and progression (p < 0.0001). In the multivariate Cox model, XRCC1 expression was independently associated with cancer specific [p = 0.038] and progression free survival [p = 0.003]. Preclinically, XRCC1 negative cells were sensitive to cisplatin compared to XRCC1 positive cells. Sensitivity to cisplatin in XRCC1 negative cells was associated with accumulation of DNA double strand breaks and G2/M cell cycle arrest. XRCC1 expression is associated with adverse clinicopathological and survival outcomes in patients. Preclinical data provides mechanistic functional evidence for cisplatin sensitivity in XRCC1 negative cells. XRCC1 is a promising predictive biomarker in ovarian cancer.
Collapse
Affiliation(s)
- Tarek Abdel-Fatah
- Department of Clinical Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
19
|
Sultana R, Abdel-Fatah T, Abbotts R, Hawkes C, Albarakati N, Seedhouse C, Ball G, Chan S, Rakha EA, Ellis IO, Madhusudan S. Targeting XRCC1 deficiency in breast cancer for personalized therapy. Cancer Res 2012; 73:1621-34. [PMID: 23253910 DOI: 10.1158/0008-5472.can-12-2929] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
XRCC1 is a key component of DNA base excision repair, single strand break repair, and backup nonhomologous end-joining pathway. XRCC1 (X-ray repair cross-complementing gene 1) deficiency promotes genomic instability, increases cancer risk, and may have clinical application in breast cancer. We investigated XRCC1 expression in early breast cancers (n = 1,297) and validated in an independent cohort of estrogen receptor (ER)-α-negative breast cancers (n = 281). Preclinically, we evaluated XRCC1-deficient and -proficient Chinese hamster and human cancer cells for synthetic lethality application using double-strand break (DSB) repair inhibitors [KU55933 (ataxia telangectasia-mutated; ATM inhibitor) and NU7441 (DNA-PKcs inhibitor)]. In breast cancer, loss of XRCC1 (16%) was associated with high grade (P < 0.0001), loss of hormone receptors (P < 0.0001), triple-negative (P < 0.0001), and basal-like phenotypes (P = 0.001). Loss of XRCC1 was associated with a two-fold increase in risk of death (P < 0.0001) and independently with poor outcome (P < 0.0001). Preclinically, KU55933 [2-(4-Morpholinyl)-6-(1-thianthrenyl)-4H-pyran-4-one] and NU7441 [8-(4-Dibenzothienyl)-2-(4-morpholinyl)-4H-1-benzopyran-4-one] were synthetically lethal in XRCC1-deficient compared with proficient cells as evidenced by hypersensitivity to DSB repair inhibitors, accumulation of DNA DSBs, G2-M cell-cycle arrest, and induction of apoptosis. This is the first study to show that XRCC1 deficiency in breast cancer results in an aggressive phenotype and that XRCC1 deficiency could also be exploited for a novel synthetic lethality application using DSB repair inhibitors. Cancer Res; 73(5); 1621-34. ©2012 AACR.
Collapse
Affiliation(s)
- Rebeka Sultana
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim YJ, Wilson DM. Overview of base excision repair biochemistry. Curr Mol Pharmacol 2012; 5:3-13. [PMID: 22122461 DOI: 10.2174/1874467211205010003] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/25/2010] [Indexed: 02/06/2023]
Abstract
Base excision repair (BER) is an evolutionarily conserved pathway, which could be considered the "workhorse" repair mechanism of the cell. In particular, BER corrects most forms of spontaneous hydrolytic decay products in DNA, as well as everyday oxidative and alkylative modifications to bases or the sugar phosphate backbone. The repair response involves five key enzymatic steps that aim to remove the initial DNA lesion and restore the genetic material back to its original state: (i) excision of a damaged or inappropriate base, (ii) incision of the phosphodiester backbone at the resulting abasic site, (iii) termini clean-up to permit unabated repair synthesis and/or nick ligation, (iv) gap-filling to replace the excised nucleotide, and (v) sealing of the final, remaining DNA nick. These repair steps are executed by a collection of enzymes that include DNA glycosylases, apurinic/apyrimidinic endonucleases, phosphatases, phosphodiesterases, kinases, polymerases and ligases. Defects in BER components lead to reduced cell survival, elevated mutation rates, and DNA-damaging agent hypersensitivities. In addition, the pathway plays a significant role in determining cellular responsiveness to relevant clinical anti-cancer agents, such as alkylators (e.g. temozolomide), nucleoside analogs (e.g. 5-fluorouracil), and ionizing radiation. The molecular details of BER and the contribution of the pathway to therapeutic agent resistance are reviewed herein.
Collapse
Affiliation(s)
- Yun-Jeong Kim
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
21
|
Le Chalony C, Hoffschir F, Gauthier LR, Gross J, Biard DS, Boussin FD, Pennaneach V. Partial complementation of a DNA ligase I deficiency by DNA ligase III and its impact on cell survival and telomere stability in mammalian cells. Cell Mol Life Sci 2012; 69:2933-49. [PMID: 22460582 PMCID: PMC3417097 DOI: 10.1007/s00018-012-0975-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 01/08/2023]
Abstract
DNA ligase I (LigI) plays a central role in the joining of strand interruptions during replication and repair. In our current study, we provide evidence that DNA ligase III (LigIII) and XRCC1, which form a complex that functions in single-strand break repair, are required for the proliferation of mammalian LigI-depleted cells. We show from our data that in cells with either dysfunctional LigI activity or depleted of this enzyme, both LigIII and XRCC1 are retained on the chromatin and accumulate at replication foci. We also demonstrate that the LigI and LigIII proteins cooperate to inhibit sister chromatid exchanges but that only LigI prevents telomere sister fusions. Taken together, these results suggest that in cells with dysfunctional LigI, LigIII contributes to the ligation of replication intermediates but not to the prevention of telomeric instability.
Collapse
|
22
|
DNA repair in human pluripotent stem cells is distinct from that in non-pluripotent human cells. PLoS One 2012; 7:e30541. [PMID: 22412831 PMCID: PMC3295811 DOI: 10.1371/journal.pone.0030541] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022] Open
Abstract
The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use.
Collapse
|
23
|
Stults DM, Killen MW, Shelton BJ, Pierce AJ. Recombination phenotypes of the NCI-60 collection of human cancer cells. BMC Mol Biol 2011; 12:23. [PMID: 21586152 PMCID: PMC3112106 DOI: 10.1186/1471-2199-12-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 05/17/2011] [Indexed: 11/10/2022] Open
Abstract
Background The NCI-60 is a collection of tumor cell lines derived from a variety of human adult cancer tissue types and is commonly used for genetic analysis and screening of potential chemotherapeutic agents. We wanted to understand the contributions of specific mechanisms of genomic instability to the etiology of cancers represented by the NCI-60. Results We screened the NCI-60 for dysregulated homologous recombination by using the gene cluster instability (GCI) assay we pioneered, and for defects in base excision repair by sensitivity to 5-hydroxymethyl-2'-deoxyuridine (hmdUrd). We identified subsets of the NCI-60 lines that either displayed the characteristic molecular signature of GCI or were sensitive to hmdUrd. With the exception of the NCI-H23 lung cancer line, these phenotypes were not found to overlap. None of the lines examined in either subset exhibited significant changes in the frequency of sister chromatid exchanges (SCE), neither did any of the lines in either subset exhibit microsatellite instability (MSI) indicative of defects in DNA mismatch repair. Conclusions Gene cluster instability, sensitivity to hmdUrd and sister chromatid exchange are mechanistically distinct phenomena. Genomic instability in the NCI-60 appears to involve only one mechanism of instability for each individual cell line.
Collapse
Affiliation(s)
- Dawn M Stults
- Department of Toxicology, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
24
|
Cells expressing FLT3/ITD mutations exhibit elevated repair errors generated through alternative NHEJ pathways: implications for genomic instability and therapy. Blood 2010; 116:5298-305. [PMID: 20807885 DOI: 10.1182/blood-2010-03-272591] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The internal tandem duplication (ITD) mutations of the FMS-like tyrosine kinase-3 (FLT3) receptor found in acute myeloid leukemia patients are associated with poor prognosis. Although DNA double-strand breaks (DSBs) are mainly repaired by the DNA-PK-dependent nonhomologous end-joining (NHEJ) pathway in normal mammalian cells, an alternative and less well-defined NHEJ pathway, characterized by microhomology at the repair junctions, play a role in the generation of deletions and translocations leading to cancer progression. Here we report that in FLT3/ITD-expressing cell lines and bone marrow mononuclear cells from FLT3/ITD knock-in mice, end-joining of DSBs occurs at microhomologous sequences resulting in a high frequency of DNA deletions. Strikingly, levels of Ku proteins, key components of the main NHEJ pathway, are decreased in FLT3/ITD(+) cell lines and murine FLT3/ITD bone marrow mononuclear cells. Concomitantly, levels of DNA ligase IIIα, a component of ALT NHEJ, are increased in FLT3/ITD-expressing cells. Cells treated with a FLT3 inhibitor demonstrate decreased DNA ligase IIIα and a reduction in DNA deletions, suggesting that FLT3 signaling regulates the pathways by which DSBs are repaired. Thus, therapy to inhibit FLT3/ITD signaling and/or DNA ligase IIIα may lead to repair that reduces repair errors and genomic instability.
Collapse
|
25
|
Wilson PF, Nagasawa H, Fitzek MM, Little JB, Bedford JS. G2-phase chromosomal radiosensitivity of primary fibroblasts from hereditary retinoblastoma family members and some apparently normal controls. Radiat Res 2010; 173:62-70. [PMID: 20041760 DOI: 10.1667/rr1943.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We previously described an enhanced sensitivity for cell killing and gamma-H2AX focus induction after both high-dose-rate and continuous low-dose-rate gamma irradiation in 14 primary fibroblast strains derived from hereditary-type retinoblastoma family members (both affected RB1(+/-) probands and unaffected RB1(+/+) parents). Here we present G(2)-phase chromosomal radiosensitivity assay data for primary fibroblasts derived from these RB family members and five Coriell cell bank controls (four apparently normal individuals and one bilateral RB patient). The RB family members and two normal Coriell strains had significantly higher ( approximately 1.5-fold, P < 0.05) chromatid-type aberration frequencies in the first postirradiation mitosis after doses of 50 cGy and 1 Gy of (137)Cs gamma radiation compared to the remaining Coriell strains. The induction of chromatid-type aberrations by high-dose-rate G(2)-phase gamma irradiation is significantly correlated to the proliferative ability of these cells exposed to continuous low-dose-rate gamma irradiation (reported in Wilson et al., Radiat. Res. 169, 483-494, 2008). Our results suggest that these moderately radiosensitive individuals may harbor hypomorphic genetic variants in genomic maintenance and/or DNA repair genes or may carry epigenetic changes involving genes that more broadly modulate such systems, including G(2)-phase-specific DNA damage responses.
Collapse
Affiliation(s)
- Paul F Wilson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | |
Collapse
|
26
|
Zhang R, Niu Y, Zhou Y. Increase the cisplatin cytotoxicity and cisplatin-induced DNA damage in HepG2 cells by XRCC1 abrogation related mechanisms. Toxicol Lett 2009; 192:108-14. [PMID: 19853026 DOI: 10.1016/j.toxlet.2009.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/10/2009] [Accepted: 10/12/2009] [Indexed: 01/02/2023]
Abstract
Cisplatin is one of the most potent chemotherapeutic anticancer drugs for the treatment of various cancers. The cytotoxic action of the drug is often thought to be associated with its ability to bind DNA to form cisplatin-DNA adducts. Impaired DNA repair processes including base excision repair (BER) play important roles on its cytotoxicity. XRCC1 is a key protein known to play a central role at an early stage in the BER pathway. However, whether XRCC1 contributes to decrease the cisplatin cytotoxicity and cisplatin-induced DNA damage in HepG2 still remains unknown. Hence, the purpose of this study was to explore whether abrogation of XRCC1 gene expression by short hairpin RNAs (shRNA) could reduce DNA repair and thus sensitize liver cancer cells to cisplatin. We abrogated the XRCC1 gene in HepG2 cell using shRNA transfection. Cell viability was measured by MTT assay and clonogenicity assay. Comet assay was used to detect the DNA damage induced by cisplatin. The host cell reactivation was employed to assess the DNA repair capacity of cisplatin-damaged luciferase reporter plasmid. Flow cytometry analysis was used to determine cisplatin-induced apoptosis, cell cycle and reactive oxygen species (ROS). The results showed that abrogation of XRCC1 could sensitize HepG2 cells to cisplatin. This enhanced cytotoxicity could be attributed to the increased DNA damage and reduced DNA repair capacity. Increasing cell cycle arrest and intracellular ROS production lead to more tumor cell apoptosis and then enhanced the cisplatin cytotoxicity. Our results suggested that the cisplatin cytotoxicity may increase by targeting inhibition of XRCC1.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| | | | | |
Collapse
|
27
|
Wang S, Gong Z, Chen R, Liu Y, Li A, Li G, Zhou J. JWA regulates XRCC1 and functions as a novel base excision repair protein in oxidative-stress-induced DNA single-strand breaks. Nucleic Acids Res 2009; 37:1936-50. [PMID: 19208635 PMCID: PMC2665235 DOI: 10.1093/nar/gkp054] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
JWA was recently demonstrated to be involved in cellular responses to environmental stress including oxidative stress. Although it was found that JWA protected cells from reactive oxygen species-induced DNA damage, upregulated base excision repair (BER) protein XRCC1 and downregulated PARP-1, the molecular mechanism of JWA in regulating the repair of DNA single-strand breaks (SSBs) is still unclear. Our present studies demonstrated that a reduction in JWA protein levels in cells resulted in a decrease of SSB repair capacity and hypersensitivity to DNA-damaging agents such as methyl methanesulfonate and hydrogen peroxide. JWA functioned as a repair protein by multi-interaction with XRCC1. On the one hand, JWA was translocated into the nucleus by the carrier protein XRCC1 and co-localized with XRCC1 foci after oxidative DNA damage. On the other hand, JWA via MAPK signaling pathway regulated nuclear factor E2F1, which further transcriptionally regulated XRCC1. In addition, JWA protected XRCC1 protein from ubiquitination and degradation by proteasome. These findings indicate that JWA may serve as a novel regulator of XRCC1 in the BER protein complex to facilitate the repair of DNA SSBs.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, Cancer Centre, School of Public Health, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Kulkarni A, McNeill DR, Gleichmann M, Mattson MP, Wilson DM. XRCC1 protects against the lethality of induced oxidative DNA damage in nondividing neural cells. Nucleic Acids Res 2008; 36:5111-21. [PMID: 18682529 PMCID: PMC2528184 DOI: 10.1093/nar/gkn480] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
XRCC1 is a critical scaffold protein that orchestrates efficient single-strand break repair (SSBR). Recent data has found an association of XRCC1 with proteins causally linked to human spinocerebellar ataxias—aprataxin and tyrosyl-DNA phosphodiesterase 1—implicating SSBR in protection against neuronal cell loss and neurodegenerative disease. We demonstrate herein that shRNA lentiviral-mediated XRCC1 knockdown in human SH-SY5Y neuroblastoma cells results in a largely selective increase in sensitivity of the nondividing (i.e. terminally differentiated) cell population to the redox-cycling agents, menadione and paraquat; this reduced survival was accompanied by an accumulation of DNA strand breaks. Using hypoxanthine–xanthine oxidase as the oxidizing method, XRCC1 deficiency affected both dividing and nondividing SH-SY5Y cells, with a greater effect on survival seen in the former case, suggesting that the spectrum of oxidative DNA damage created dictates the specific contribution of XRCC1 to cellular resistance. Primary XRCC1 heterozygous mouse cerebellar granule cells exhibit increased strand break accumulation and reduced survival due to increased apoptosis following menadione treatment. Moreover, knockdown of XRCC1 in primary human fetal brain neurons leads to enhanced sensitivity to menadione, as indicated by increased levels of DNA strand breaks relative to control cells. The cumulative results implicate XRCC1, and more broadly SSBR, in the protection of nondividing neuronal cells from the genotoxic consequences of oxidative stress.
Collapse
Affiliation(s)
- Avanti Kulkarni
- Laboratory of Molecular Gerontology, National Institute of Aging (NIA)/National Institutes of Health (NIH), 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
29
|
Horton JK, Watson M, Stefanick DF, Shaughnessy DT, Taylor JA, Wilson SH. XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks. Cell Res 2008; 18:48-63. [PMID: 18166976 DOI: 10.1038/cr.2008.7] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision repair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities. XRCC1(-/-) mouse fibroblasts are most hypersensitive to agents that produce DNA lesions repaired by monofunctional glycosylase-initiated BER and that result in formation of indirect SSBs. A requirement for the deoxyribose phosphate lyase activity of DNA polymerase beta (pol beta) is specific to this pathway, whereas pol beta is implicated in gap-filling during repair of many types of SSBs. Elevated levels of strand breaks, and diminished repair, have been demonstrated in MMS-treated XRCC1(-/-), and to a lesser extent in pol beta(-/-) cell lines, compared with wild-type cells. Thus a strong correlation is observed between cellular sensitivity to MMS and the ability of cells to repair MMS-induced damage. Exposure of wild-type and pol beta(-/-) cells to an inhibitor of PARP activity dramatically potentiates MMS-induced cytotoxicity. XRCC1(-/-) cells are also sensitized by PARP inhibition demonstrating that PARP-mediated poly(ADP-ribosyl)ation plays a role in modulation of cytotoxicity beyond recruitment of XRCC1 to sites of DNA damage.
Collapse
Affiliation(s)
- Julie K Horton
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wilson DM. Processing of nonconventional DNA strand break ends. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:772-782. [PMID: 17948279 DOI: 10.1002/em.20346] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Single-strand breaks (SSBs) are one of the most common forms of genetic damage, arising from attack of DNA by reactive oxygen species or as intended or inadvertent products of normal cellular DNA metabolic events. Recent evidence linking defects in the enzymatic processing of nonconventional DNA SSBs, i.e., lesions incompatible with polymerase or ligase reactions, with inherited neurodegenerative disorders, reveals the importance of SSB repair in disease manifestation. I review herein the major eukaryotic enzymes (with an emphasis on the human proteins) responsible for the "clean-up" of DNA breaks harboring 3'- or 5'-blocking termini, and the cellular and disease ramifications of unrepaired SSB damage.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|