1
|
Melenotte C, Pontarotti P, Pinault L, Mège JL, Devaux C, Raoult D. Could β-Lactam Antibiotics Block Humoral Immunity? Front Immunol 2021; 12:680146. [PMID: 34603278 PMCID: PMC8480522 DOI: 10.3389/fimmu.2021.680146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
It has been reported that treatment with β-lactam antibiotics induces leukopenia and candidemia, worsens the clinical response to anticancer immunotherapy and decreases immune response to vaccination. β-lactamases can cleave β-lactam antibiotics by blocking their activity. Two distincts superfamilies of β-lactamases are described, the serine β-lactamases and the zinc ion dependent metallo-β-lactamases. In human, 18 metallo-β-lactamases encoding genes (hMBLs) have been identified. While the physiological role of most of them remains unknown, it is well established that the SNM1A, B and C proteins are involved in DNA repair. The SNM1C/Artemis protein is precisely associated in the V(D)J segments rearrangement, that leads to immunoglobulin (Ig) and T-cell receptor variable regions, which have a crucial role in the immune response. Thus in humans, SNM1C/Artemis mutation is associated with severe combined immunodeficiency characterized by hypogammaglobulinemia deficient cellular immunity and opportunistic infections. While catalytic site of hMBLs and especially that of the SNM1 family is highly conserved, in vitro studies showed that some β-lactam antibiotics, and precisely third generation of cephalosporin and ampicillin, inhibit the metallo-β-lactamase proteins SNM1A & B and the SNM1C/Artemis protein complex. By analogy, the question arises as to whether β-lactam antibiotics can block the SNM1C/Artemis protein in humans inducing transient immunodeficiency. We reviewed here the literature data supporting this hypothesis based on in silico, in vitro and in vivo evidences. Understanding the impact of β-lactam antibiotics on the immune cell will offer new therapeutic clues and new clinical approaches in oncology, immunology, and infectious diseases.
Collapse
Affiliation(s)
- Cléa Melenotte
- Aix-Marseille Univ, Institut de Recherche et Développement (IRD), Assistance Publique des Hpitaux de Marseille (APHM), Microbes, Evolution, Phylogénie et Infection (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Pierre Pontarotti
- Aix-Marseille Univ, Institut de Recherche et Développement (IRD), Assistance Publique des Hpitaux de Marseille (APHM), Microbes, Evolution, Phylogénie et Infection (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Lucile Pinault
- Aix-Marseille Univ, Institut de Recherche et Développement (IRD), Assistance Publique des Hpitaux de Marseille (APHM), Microbes, Evolution, Phylogénie et Infection (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mège
- Aix-Marseille Univ, Institut de Recherche et Développement (IRD), Assistance Publique des Hpitaux de Marseille (APHM), Microbes, Evolution, Phylogénie et Infection (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Christian Devaux
- Aix-Marseille Univ, Institut de Recherche et Développement (IRD), Assistance Publique des Hpitaux de Marseille (APHM), Microbes, Evolution, Phylogénie et Infection (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, Institut de Recherche et Développement (IRD), Assistance Publique des Hpitaux de Marseille (APHM), Microbes, Evolution, Phylogénie et Infection (MEPHI), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| |
Collapse
|
2
|
Rogers CM, Simmons Iii RH, Fluhler Thornburg GE, Buehler NJ, Bochman ML. Fanconi anemia-independent DNA inter-strand crosslink repair in eukaryotes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 158:33-46. [PMID: 32877700 DOI: 10.1016/j.pbiomolbio.2020.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
DNA inter-strand crosslinks (ICLs) are dangerous lesions that can be caused by a variety of endogenous and exogenous bifunctional compounds. Because covalently linking both strands of the double helix locally disrupts DNA replication and transcription, failure to remove even a single ICL can be fatal to the cell. Thus, multiple ICL repair pathways have evolved, with the best studied being the canonical Fanconi anemia (FA) pathway. However, recent research demonstrates that different types of ICLs (e.g., backbone distorting vs. non-distorting) can be discriminated by the cell, which then mounts a specific repair response using the FA pathway or one of a variety of FA-independent ICL repair pathways. This review focuses on the latter, covering current work on the transcription-coupled, base excision, acetaldehyde-induced, and SNM1A/RecQ4 ICL repair pathways and highlighting unanswered questions in the field. Answering these questions will provide mechanistic insight into the various pathways of ICL repair and enable ICL-inducing agents to be more effectively used as chemotherapeutics.
Collapse
Affiliation(s)
- Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Robert H Simmons Iii
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Gabriella E Fluhler Thornburg
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Nicholas J Buehler
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA.
| |
Collapse
|
3
|
Rogers CM, Lee CY, Parkins S, Buehler NJ, Wenzel S, Martínez-Márquez F, Takagi Y, Myong S, Bochman ML. The yeast Hrq1 helicase stimulates Pso2 translesion nuclease activity and thereby promotes DNA interstrand crosslink repair. J Biol Chem 2020; 295:8945-8957. [PMID: 32371399 PMCID: PMC7335788 DOI: 10.1074/jbc.ra120.013626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
DNA interstrand crosslink (ICL) repair requires a complex network of DNA damage response pathways. Removal of the ICL lesions is vital, as they are physical barriers to essential DNA processes that require the separation of duplex DNA, such as replication and transcription. The Fanconi anemia (FA) pathway is the principal mechanism for ICL repair in metazoans and is coupled to DNA replication. In Saccharomyces cerevisiae, a vestigial FA pathway is present, but ICLs are predominantly repaired by a pathway involving the Pso2 nuclease, which is hypothesized to use its exonuclease activity to digest through the lesion to provide access for translesion polymerases. However, Pso2 lacks translesion nuclease activity in vitro, and mechanistic details of this pathway are lacking, especially relative to FA. We recently identified the Hrq1 helicase, a homolog of the disease-linked enzyme RecQ-like helicase 4 (RECQL4), as a component of Pso2-mediated ICL repair. Here, using genetic, biochemical, and biophysical approaches, including single-molecule FRET (smFRET)- and gel-based nuclease assays, we show that Hrq1 stimulates the Pso2 nuclease through a mechanism that requires Hrq1 catalytic activity. Importantly, Hrq1 also stimulated Pso2 translesion nuclease activity through a site-specific ICL in vitro We noted that stimulation of Pso2 nuclease activity is specific to eukaryotic RecQ4 subfamily helicases, and genetic and biochemical data suggest that Hrq1 likely interacts with Pso2 through their N-terminal domains. These results advance our understanding of FA-independent ICL repair and establish a role for the RecQ4 helicases in the repair of these detrimental DNA lesions.
Collapse
Affiliation(s)
- Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Chun-Ying Lee
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Samuel Parkins
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicholas J Buehler
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Sabine Wenzel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Francisco Martínez-Márquez
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
4
|
Zhang H, Chen Z, Ye Y, Ye Z, Cao D, Xiong Y, Srivastava M, Feng X, Tang M, Wang C, Tainer JA, Chen J. SLX4IP acts with SLX4 and XPF-ERCC1 to promote interstrand crosslink repair. Nucleic Acids Res 2019; 47:10181-10201. [PMID: 31495888 PMCID: PMC6821277 DOI: 10.1093/nar/gkz769] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/03/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Interstrand crosslinks (ICLs) are highly toxic DNA lesions that are repaired via a complex process requiring the coordination of several DNA repair pathways. Defects in ICL repair result in Fanconi anemia, which is characterized by bone marrow failure, developmental abnormalities, and a high incidence of malignancies. SLX4, also known as FANCP, acts as a scaffold protein and coordinates multiple endonucleases that unhook ICLs, resolve homologous recombination intermediates, and perhaps remove unhooked ICLs. In this study, we explored the role of SLX4IP, a constitutive factor in the SLX4 complex, in ICL repair. We found that SLX4IP is a novel regulatory factor; its depletion sensitized cells to treatment with ICL-inducing agents and led to accumulation of cells in the G2/M phase. We further discovered that SLX4IP binds to SLX4 and XPF-ERCC1 simultaneously and that disruption of one interaction also disrupts the other. The binding of SLX4IP to both SLX4 and XPF-ERCC1 not only is vital for maintaining the stability of SLX4IP protein, but also promotes the interaction between SLX4 and XPF-ERCC1, especially after DNA damage. Collectively, these results demonstrate a new regulatory role for SLX4IP in maintaining an efficient SLX4-XPF-ERCC1 complex in ICL repair.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yin Ye
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zu Ye
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Cao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Li C, Wong JTY. DNA Damage Response Pathways in Dinoflagellates. Microorganisms 2019; 7:E191. [PMID: 31284474 PMCID: PMC6680887 DOI: 10.3390/microorganisms7070191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
Dinoflagellates are a general group of phytoplankton, ubiquitous in aquatic environments. Most dinoflagellates are non-obligate autotrophs, subjected to potential physical and chemical DNA-damaging agents, including UV irradiation, in the euphotic zone. Delay of cell cycles by irradiation, as part of DNA damage responses (DDRs), could potentially lead to growth inhibition, contributing to major errors in the estimation of primary productivity and interpretations of photo-inhibition. Their liquid crystalline chromosomes (LCCs) have large amount of abnormal bases, restricted placement of coding sequences at the chromosomes periphery, and tandem repeat-encoded genes. These chromosome characteristics, their large genome sizes, as well as the lack of architectural nucleosomes, likely contribute to possible differential responses to DNA damage agents. In this study, we sought potential dinoflagellate orthologues of eukaryotic DNA damage repair pathways, and the linking pathway with cell-cycle control in three dinoflagellate species. It appeared that major orthologues in photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, double-strand break repair and homologous recombination repair are well represented in dinoflagellate genomes. Future studies should address possible differential DNA damage responses of dinoflagellates over other planktonic groups, especially in relation to possible shift of life-cycle transitions in responses to UV irradiation. This may have a potential role in the persistence of dinoflagellate red tides with the advent of climatic change.
Collapse
Affiliation(s)
- Chongping Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Buzon B, Grainger R, Huang S, Rzadki C, Junop MS. Structure-specific endonuclease activity of SNM1A enables processing of a DNA interstrand crosslink. Nucleic Acids Res 2019; 46:9057-9066. [PMID: 30165656 PMCID: PMC6158701 DOI: 10.1093/nar/gky759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/20/2018] [Indexed: 01/09/2023] Open
Abstract
DNA interstrand crosslinks (ICLs) covalently join opposing strands, blocking both replication and transcription, therefore making ICL-inducing compounds highly toxic and ideal anti-cancer agents. While incisions surrounding the ICL are required to remove damaged DNA, it is currently unclear which endonucleases are needed for this key event. SNM1A has been shown to play an important function in human ICL repair, however its suggested role has been limited to exonuclease activity and not strand incision. Here we show that SNM1A has endonuclease activity, having the ability to cleave DNA structures that arise during the initiation of ICL repair. In particular, this endonuclease activity cleaves single-stranded DNA. Given that unpaired DNA regions occur 5′ to an ICL, these findings suggest SNM1A may act as either an endonuclease and/or exonuclease during ICL repair. This finding is significant as it expands the potential role of SNM1A in ICL repair.
Collapse
Affiliation(s)
- Beverlee Buzon
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Ryan Grainger
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Simon Huang
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada
| | - Cameron Rzadki
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada
| | - Murray S Junop
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
7
|
SNM1B/Apollo in the DNA damage response and telomere maintenance. Oncotarget 2018; 8:48398-48409. [PMID: 28430596 PMCID: PMC5564657 DOI: 10.18632/oncotarget.16864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 01/26/2023] Open
Abstract
hSNM1B/Apollo is a member of the highly conserved β-CASP subgroup within the MBL superfamily of proteins. It interacts with several DNA repair proteins and functions within the Fanconi anemia pathway in response to DNA interstrand crosslinks. As a shelterin accessory protein, hSNM1B/Apollo is also vital for the generation and maintenance of telomeric overhangs. In this review, we will summarize studies on hSNM1B/Apollo's function, including its contribution to DNA damage signaling, replication fork maintenance, control of topological stress and telomere protection. Furthermore, we will highlight recent studies illustrating hSNM1B/Apollo's putative role in human disease.
Collapse
|
8
|
Wilson DM, Rieckher M, Williams AB, Schumacher B. Systematic analysis of DNA crosslink repair pathways during development and aging in Caenorhabditis elegans. Nucleic Acids Res 2017; 45:9467-9480. [PMID: 28934497 PMCID: PMC5766164 DOI: 10.1093/nar/gkx660] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/18/2017] [Indexed: 01/12/2023] Open
Abstract
DNA interstrand crosslinks (ICLs) are generated by endogenous sources and chemotherapeutics, and pose a threat to genome stability and cell survival. Using Caenorhabditis elegans mutants, we identify DNA repair factors that protect against the genotoxicity of ICLs generated by trioxsalen/ultraviolet A (TMP/UVA) during development and aging. Mutations in nucleotide excision repair (NER) components (e.g. XPA-1 and XPF-1) imparted extreme sensitivity to TMP/UVA relative to wild-type animals, manifested as developmental arrest, defects in adult tissue morphology and functionality, and shortened lifespan. Compensatory roles for global-genome (XPC-1) and transcription-coupled (CSB-1) NER in ICL sensing were exposed. The analysis also revealed contributions of homologous recombination (BRC-1/BRCA1), the MUS-81, EXO-1, SLX-1 and FAN-1 nucleases, and the DOG-1 (FANCJ) helicase in ICL resolution, influenced by the replicative-status of the cell/tissue. No obvious or critical role in ICL repair was seen for non-homologous end-joining (cku-80) or base excision repair (nth-1, exo-3), the Fanconi-related proteins BRC-2 (BRCA2/FANCD1) and FCD-2 (FANCD2), the WRN-1 or HIM-6 (BLM) helicases, or the GEN-1 or MRT-1 (SNM1) nucleases. Our efforts uncover replication-dependent and -independent ICL repair networks, and establish nematodes as a model for investigating the repair and consequences of DNA crosslinks in metazoan development and in adult post-mitotic and proliferative germ cells.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Matthias Rieckher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Ashley B Williams
- Institute for Genome Stability in Aging and Disease, Medical Faculty, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
9
|
Meredith EL, Kumar A, Konno A, Szular J, Alsford S, Seifert K, Horn D, Wilkinson SR. Distinct activation mechanisms trigger the trypanocidal activity of DNA damaging prodrugs. Mol Microbiol 2017; 106:207-222. [PMID: 28792090 PMCID: PMC5656836 DOI: 10.1111/mmi.13767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2017] [Indexed: 02/02/2023]
Abstract
Quinone-based compounds have been exploited to treat infectious diseases and cancer, with such chemicals often functioning as inhibitors of key metabolic pathways or as prodrugs. Here, we screened an aziridinyl 1,4-benzoquinone (ABQ) library against the causative agents of trypanosomiasis, and cutaneous leishmaniasis, identifying several potent structures that exhibited EC50 values of <100 nM. However, these compounds also displayed significant toxicity towards mammalian cells indicating that they are not suitable therapies for systemic infections. Using anti-T. brucei ABQs as chemical probes, we demonstrated that these exhibit different trypanocidal modes of action. Many functioned as type I nitroreductase (TbNTR) or cytochrome P450 reductase (TbCPR) dependent prodrugs that, following activation, generate metabolites which promote DNA damage, specifically interstrand crosslinks (ICLs). Trypanosomes lacking TbSNM1, a nuclease that specifically repairs ICLs, are hypersensitive to most ABQ prodrugs, a phenotype exacerbated in cells also engineered to express elevated levels of TbNTR or TbCPR. In contrast, ABQs that contain substituent groups on the biologically active aziridine do not function as TbNTR or TbCPR-activated prodrugs and do not promote DNA damage. By unravelling how ABQs mediate their activities, features that facilitate the desired anti-parasitic growth inhibitory effects could be incorporated into new, safer compounds targeting these neglected tropical diseases.
Collapse
Affiliation(s)
- Emma Louise Meredith
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| | - Ambika Kumar
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| | - Aya Konno
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| | - Joanna Szular
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| | - Sam Alsford
- Department of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical Medicine, Keppel StreetLondonUK
| | - Karin Seifert
- Department of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical Medicine, Keppel StreetLondonUK
| | - David Horn
- The Wellcome Trust Centre for Anti‐Infectives Research, School of Life SciencesUniversity of DundeeDundeeUK
| | - Shane R. Wilkinson
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| |
Collapse
|
10
|
Cahill ST, Tarhonskaya H, Rydzik AM, Flashman E, McDonough MA, Schofield CJ, Brem J. Use of ferrous iron by metallo-β-lactamases. J Inorg Biochem 2016; 163:185-193. [PMID: 27498591 PMCID: PMC5108564 DOI: 10.1016/j.jinorgbio.2016.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/12/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Metallo-β-lactamases (MBLs) catalyse the hydrolysis of almost all β-lactam antibacterials including the latest generation carbapenems and are a growing worldwide clinical problem. It is proposed that MBLs employ one or two zinc ion cofactors in vivo. Isolated MBLs are reported to use transition metal ions other than zinc, including copper, cadmium and manganese, with iron ions being a notable exception. We report kinetic and biophysical studies with the di-iron(II)-substituted metallo-β-lactamase II from Bacillus cereus (di-Fe(II) BcII) and the clinically relevant B1 subclass Verona integron-encoded metallo-β-lactamase 2 (di-Fe(II) VIM-2). The results reveal that MBLs can employ ferrous iron in catalysis, but with altered kinetic and inhibition profiles compared to the zinc enzymes. A crystal structure of di-Fe(II) BcII reveals only small overall changes in the active site compared to the di-Zn(II) enzyme including retention of the di-metal bridging water; however, the positions of the metal ions are altered in the di-Fe(II) compared to the di-Zn(II) structure. Stopped-flow analyses reveal that the mechanism of nitrocefin hydrolysis by both di-Fe(II) BcII and di-Fe(II) VIM-2 is altered compared to the di-Zn(II) enzymes. Notably, given that the MBLs are the subject of current medicinal chemistry efforts, the results raise the possibility the Fe(II)-substituted MBLs may be of clinical relevance under conditions of low zinc availability, and reveal potential variation in inhibitor activity against the differently metallated MBLs.
Collapse
Affiliation(s)
| | | | - Anna M Rydzik
- Chemistry Research Laboratory, Oxford, United Kingdom
| | | | | | | | - Jürgen Brem
- Chemistry Research Laboratory, Oxford, United Kingdom.
| |
Collapse
|
11
|
Allerston CK, Lee SY, Newman JA, Schofield CJ, McHugh PJ, Gileadi O. The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities. Nucleic Acids Res 2015; 43:11047-60. [PMID: 26582912 PMCID: PMC4678830 DOI: 10.1093/nar/gkv1256] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/30/2015] [Indexed: 11/30/2022] Open
Abstract
The human SNM1A and SNM1B/Apollo proteins are members of an extended family of eukaryotic nuclease containing a motif related to the prokaryotic metallo-β-lactamase (MBL) fold. SNM1A is a key exonuclease during replication-dependent and transcription-coupled interstrand crosslink repair, while SNM1B/Apollo is required for maintaining telomeric overhangs. Here, we report the crystal structures of SNM1A and SNM1B at 2.16 Å. While both proteins contain a typical MBL-β-CASP domain, a region of positive charge surrounds the active site of SNM1A, which is absent in SNM1B and explains the greater apparent processivity of SNM1A. The structures of both proteins also reveal a putative, wide DNA-binding groove. Extensive mutagenesis of this groove, coupled with detailed biochemical analysis, identified residues that did not impact on SNM1A catalytic activity, but drastically reduced its processivity. Moreover, we identified a key role for this groove for efficient digestion past DNA interstrand crosslinks, facilitating the key DNA repair reaction catalysed by SNM1A. Together, the architecture and dimensions of this groove, coupled to the surrounding region of high positive charge, explain the remarkable ability of SNM1A to accommodate and efficiently digest highly distorted DNA substrates, such as those containing DNA lesions.
Collapse
Affiliation(s)
- Charles K Allerston
- Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK
| | - Sook Y Lee
- Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Joseph A Newman
- Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Peter J McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Opher Gileadi
- Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
12
|
Wang J, Aroumougame A, Lobrich M, Li Y, Chen D, Chen J, Gong Z. PTIP associates with Artemis to dictate DNA repair pathway choice. Genes Dev 2015; 28:2693-8. [PMID: 25512557 PMCID: PMC4265673 DOI: 10.1101/gad.252478.114] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PARP inhibitors (PARPi) are being used in patients with BRCA1/2 mutations; however, doubly deficient BRCA1−/−53BP1−/− tumors become resistant to PARPis. 53BP1 and its known downstream effectors, PTIP and RIF1, lack enzymatic activities directly implicated in DNA repair. Wang et al. uncovered a nuclease, Artemis, as a PTIP-binding protein that trims DNA ends, promotes NHEJ, and directly competes with the HR repair pathway. Loss of Artemis restores PARPi resistance in BRCA1-deficient cells. PARP inhibitors (PARPis) are being used in patients with BRCA1/2 mutations. However, doubly deficient BRCA1−/−53BP1−/− cells or tumors become resistant to PARPis. Since 53BP1 or its known downstream effectors, PTIP and RIF1 (RAP1-interacting factor 1 homolog), lack enzymatic activities directly implicated in DNA repair, we decided to further explore the 53BP1-dependent pathway. In this study, we uncovered a nuclease, Artemis, as a PTIP-binding protein. Loss of Artemis restores PARPi resistance in BRCA1-deficient cells. Collectively, our data demonstrate that Artemis is the major downstream effector of the 53BP1 pathway, which prevents end resection and promotes nonhomologous end-joining and therefore directly competes with the homologous recombination repair pathway.
Collapse
Affiliation(s)
- Jiadong Wang
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Asaithamby Aroumougame
- Department of Radiation Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Markus Lobrich
- Radiation Biology and DNA Repair Laboratory, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Yujing Li
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - David Chen
- Department of Radiation Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA;
| | - Zihua Gong
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA;
| |
Collapse
|
13
|
Pettinati I, Brem J, McDonough MA, Schofield CJ. Crystal structure of human persulfide dioxygenase: structural basis of ethylmalonic encephalopathy. Hum Mol Genet 2015; 24:2458-69. [PMID: 25596185 PMCID: PMC4383860 DOI: 10.1093/hmg/ddv007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/13/2015] [Indexed: 01/08/2023] Open
Abstract
The ethylmalonic encephalopathy protein 1 (ETHE1) catalyses the oxygen-dependent oxidation of glutathione persulfide (GSSH) to give persulfite and glutathione. Mutations to the hETHE1 gene compromise sulfide metabolism leading to the genetic disease ethylmalonic encephalopathy. hETHE1 is a mono-iron binding member of the metallo-β-lactamase (MBL) fold superfamily. We report crystallographic analysis of hETHE1 in complex with iron to 2.6 Å resolution. hETHE1 contains an αββα MBL-fold, which supports metal-binding by the side chains of an aspartate and two histidine residues; three water molecules complete octahedral coordination of the iron. The iron binding hETHE1 enzyme is related to the ‘classical’ di-zinc binding MBL hydrolases involved in antibiotic resistance, but has distinctive features. The histidine and aspartate residues involved in iron-binding in ETHE1, occupy similar positions to those observed across both the zinc 1 and zinc 2 binding sites in classical MBLs. The active site of hETHE1 is very similar to an ETHE1-like enzyme from Arabidopsis thaliana (60% sequence identity). A channel leading to the active site is sufficiently large to accommodate a GSSH substrate. Some of the observed hETHE1 clinical mutations cluster in the active site region. The structure will serve as a basis for detailed functional and mechanistic studies on ETHE1 and will be useful in the development of selective MBL inhibitors.
Collapse
Affiliation(s)
- Ilaria Pettinati
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Michael A McDonough
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | |
Collapse
|
14
|
Iyama T, Lee SY, Berquist BR, Gileadi O, Bohr VA, Seidman MM, McHugh PJ, Wilson DM. CSB interacts with SNM1A and promotes DNA interstrand crosslink processing. Nucleic Acids Res 2014; 43:247-58. [PMID: 25505141 PMCID: PMC4288174 DOI: 10.1093/nar/gku1279] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cockayne syndrome (CS) is a premature aging disorder characterized by photosensitivity, impaired development and multisystem progressive degeneration, and consists of two strict complementation groups, A and B. Using a yeast two-hybrid approach, we identified the 5′-3′ exonuclease SNM1A as one of four strong interacting partners of CSB. This direct interaction was confirmed using purified recombinant proteins—with CSB able to modulate the exonuclease activity of SNM1A on oligonucleotide substrates in vitro—and the two proteins were shown to exist in a common complex in human cell extracts. CSB and SNM1A were also found, using fluorescently tagged proteins in combination with confocal microscopy and laser microirradiation, to be recruited to localized trioxsalen-induced ICL damage in human cells, with accumulation being suppressed by transcription inhibition. Moreover, SNM1A recruitment was significantly reduced in CSB-deficient cells, suggesting coordination between the two proteins in vivo. CSB-deficient neural cells exhibited increased sensitivity to DNA crosslinking agents, particularly, in a non-cycling, differentiated state, as well as delayed ICL processing as revealed by a modified Comet assay and γ-H2AX foci persistence. The results indicate that CSB coordinates the resolution of ICLs, possibly in a transcription-associated repair mechanism involving SNM1A, and that defects in the process could contribute to the post-mitotic degenerative pathologies associated with CS.
Collapse
Affiliation(s)
- Teruaki Iyama
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sook Y Lee
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | | - Opher Gileadi
- The Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Peter J McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
15
|
Abstract
A critical step in DNA interstrand cross-link repair is the programmed collapse of replication forks that have stalled at an ICL. This event is regulated by the Fanconi anemia pathway, which suppresses bone marrow failure and cancer. In this perspective, we focus on the structure of forks that have stalled at ICLs, how these structures might be incised by endonucleases, and how incision is regulated by the Fanconi anemia pathway.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States; Howard Hughes Medical Institute.
| |
Collapse
|
16
|
Clauson C, Schärer OD, Niedernhofer L. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol 2013; 5:a012732. [PMID: 24086043 DOI: 10.1101/cshperspect.a012732] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA interstrand cross-links (ICLs) are lesions caused by a variety of endogenous metabolites, environmental exposures, and cancer chemotherapeutic agents that have two reactive groups. The common feature of these diverse lesions is that two nucleotides on opposite strands are covalently joined. ICLs prevent the separation of two DNA strands and therefore essential cellular processes including DNA replication and transcription. ICLs are mainly detected in S phase when a replication fork stalls at an ICL. Damage signaling and repair of ICLs are promoted by the Fanconi anemia pathway and numerous posttranslational modifications of DNA repair and chromatin structural proteins. ICLs are also detected and repaired in nonreplicating cells, although the mechanism is less clear. A unique feature of ICL repair is that both strands of DNA must be incised to completely remove the lesion. This is accomplished in sequential steps to prevent creating multiple double-strand breaks. Unhooking of an ICL from one strand is followed by translesion synthesis to fill the gap and create an intact duplex DNA, harboring a remnant of the ICL. Removal of the lesion from the second strand is likely accomplished by nucleotide excision repair. Inadequate repair of ICLs is particularly detrimental to rapidly dividing cells, explaining the bone marrow failure characteristic of Fanconi anemia and why cross-linking agents are efficacious in cancer therapy. Herein, recent advances in our understanding of ICLs and the biological responses they trigger are discussed.
Collapse
Affiliation(s)
- Cheryl Clauson
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | | | | |
Collapse
|
17
|
Ulrich HD, Takahashi DT. Readers of PCNA modifications. Chromosoma 2013; 122:259-74. [PMID: 23580141 PMCID: PMC3714560 DOI: 10.1007/s00412-013-0410-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 01/29/2023]
Abstract
The eukaryotic sliding clamp, proliferating cell nuclear antigen (PCNA), acts as a central coordinator of DNA transactions by providing a multivalent interaction surface for factors involved in DNA replication, repair, chromatin dynamics and cell cycle regulation. Posttranslational modifications (PTMs), such as mono- and polyubiquitylation, sumoylation, phosphorylation and acetylation, further expand the repertoire of PCNA’s binding partners. These modifications affect PCNA’s activity in the bypass of lesions during DNA replication, the regulation of alternative damage processing pathways such as homologous recombination and DNA interstrand cross-link repair, or impact on the stability of PCNA itself. In this review, we summarise our current knowledge about how the PTMs are “read” by downstream effector proteins that mediate the appropriate action. Given the variety of interaction partners responding to PCNA’s modified forms, the ensemble of PCNA modifications serves as an instructive model for the study of biological signalling through PTMs in general.
Collapse
Affiliation(s)
- Helle D Ulrich
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms EN6 3LD, UK.
| | | |
Collapse
|
18
|
Cruz LA, Guecheva TN, Bonato D, Henriques JAP. Relationships between chromatin remodeling and DNA damage repair induced by 8-methoxypsoralen and UVA in yeast Saccharomyces cerevisiae. Genet Mol Biol 2012; 35:1052-9. [PMID: 23412648 PMCID: PMC3571434 DOI: 10.1590/s1415-47572012000600021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic cells have developed mechanisms to prevent genomic instability, such as DNA damage detection and repair, control of cell cycle progression and cell death induction. The bifunctional compound furocumarin 8-methoxypsoralen (8-MOP) is widely used in the treatment of various inflammatory skin diseases. In this review, we summarize recent data about the role of chromatin remodeling in the repair of DNA damage induced by treatment with 8-methoxypsoralen plus UVA (8-MOP+UVA), focusing on repair proteins in budding yeast Saccharomyces cerevisiae, an established model system for studying DNA repair pathways. The interstrand crosslinks (ICL) formed by the 8-MOP+UVA treatment are detrimental lesions that can block transcription and replication, leading to cell death if not repaired. Current data show the involvement of different pathways in ICL processing, such as nucleotide excision repair (NER), base excision repair (BER), translesion repair (TLS) and double-strand break repair. 8-MOP+UVA treatment in yeast enhances the expression of genes involved in the DNA damage response, double strand break repair by homologous replication, as well as genes related to cell cycle regulation. Moreover, alterations in the expression of subtelomeric genes and genes related to chromatin remodeling are consistent with structural modifications of chromatin relevant to DNA repair. Taken together, these findings indicate a specific profile in 8-MOP+UVA responses related to chromatin remodeling and DNA repair.
Collapse
Affiliation(s)
- Lavínia Almeida Cruz
- Programa de Pós-Gradução em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
19
|
McHugh PJ, Ward TA, Chovanec M. A prototypical Fanconi anemia pathway in lower eukaryotes? Cell Cycle 2012; 11:3739-44. [PMID: 22895051 DOI: 10.4161/cc.21727] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA interstrand cross-links (ICLs) present a major challenge to cells, preventing separation of the two strands of duplex DNA and blocking major chromosome transactions, including transcription and replication. Due to the complexity of removing this form of DNA damage, no single DNA repair pathway has been shown to be capable of eradicating ICLs. In eukaryotes, ICL repair is a complex process, principally because several repair pathways compete for ICL repair intermediates in a strictly cell cycle-dependent manner. Yeast cells require a combination of nucleotide excision repair, homologous recombination repair and postreplication repair/translesion DNA synthesis to remove ICLs. There are also a number of additional ICL repair factors originally identified in the budding yeast Saccharomyces cerevisiae, called Pso1 though 10, of which Pso2 has an apparently dedicated role in ICL repair. Mammalian cells respond to ICLs by a complex network guided by factors mutated in the inherited cancer-prone disorder Fanconi anemia (FA). Although enormous progress has been made over recent years in identifying and characterizing FA factors as well as in elucidating certain aspects of the biology of FA, the mechanistic details of the ICL repair defects in FA patients remain unknown. Dissection of the FA DNA damage response pathway has, in part, been limited by the absence of FA-like pathways in highly tractable model organisms, such as yeast. Although S. cerevisiae possesses putative homologs of the FA factors FANCM, FANCJ and FANCP (Mph1, Chl1 and Slx4, respectively) as well as of the FANCM-associated proteins MHF1 and MHF2 (Mhf1 and Mhf2), the corresponding mutants display no significant increase in sensitivity to ICLs. Nevertheless, we and others have recently shown that these FA homologs, along with several other factors, control an ICL repair pathway, which has an overlapping or redundant role with a Pso2-controlled pathway. This pathway acts in S-phase and serves to prevent ICL-stalled replication forks from collapsing into DNA double-strand breaks.
Collapse
Affiliation(s)
- Peter J McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
20
|
Aggarwal M, Brosh RM. Functional analyses of human DNA repair proteins important for aging and genomic stability using yeast genetics. DNA Repair (Amst) 2012; 11:335-48. [PMID: 22349084 DOI: 10.1016/j.dnarep.2012.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/18/2022]
Abstract
Model systems have been extremely useful for studying various theories of aging. Studies of yeast have been particularly helpful to explore the molecular mechanisms and pathways that affect aging at the cellular level in the simple eukaryote. Although genetic analysis has been useful to interrogate the aging process, there has been both interest and debate over how functionally conserved the mechanisms of aging are between yeast and higher eukaryotes, especially mammalian cells. One area of interest has been the importance of genomic stability for age-related processes, and the potential conservation of proteins and pathways between yeast and human. Translational genetics have been employed to examine the functional roles of mammalian proteins using yeast as a pliable model system. In the current review recent advancements made in this area are discussed, highlighting work which shows that the cellular functions of human proteins in DNA repair and maintenance of genomic stability can be elucidated by genetic rescue experiments performed in yeast.
Collapse
Affiliation(s)
- Monika Aggarwal
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224, United States
| | | |
Collapse
|
21
|
Sengerová B, Wang AT, McHugh PJ. Orchestrating the nucleases involved in DNA interstrand cross-link (ICL) repair. Cell Cycle 2011; 10:3999-4008. [PMID: 22101340 DOI: 10.4161/cc.10.23.18385] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA interstrand cross-links (ICLs) pose a significant threat to genomic and cellular integrity by blocking essential cellular processes, including replication and transcription. In mammalian cells, much ICL repair occurs in association with DNA replication during S phase, following the stalling of a replication fork at the block caused by an ICL lesion. Here, we review recent work showing that the XPF-ERCC1 endonuclease and the hSNM1A exonuclease act in the same pathway, together with SLX4, to initiate ICL repair, with the MUS81-EME1 fork incision activity becoming important in the absence of the XPF-SNM1A-SLX4-dependent pathway. Another nuclease, the Fanconi anemia-associated nuclease (FAN1), has recently been implicated in the repair of ICLs, and we discuss the possible ways in which the activities of different nucleases at the ICL-stalled replication fork may be coordinated. In relation to this, we briefly speculate on the possible role of SLX4, which contains XPF and MUS81- interacting domains, in the coordination of ICL repair nucleases.
Collapse
Affiliation(s)
- Blanka Sengerová
- Department of Oncology, Weatherall Institute of Molecular Medicine,University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
22
|
Yan Y, Zhang X, Legerski RJ. Artemis interacts with the Cul4A-DDB1DDB2 ubiquitin E3 ligase and regulates degradation of the CDK inhibitor p27. Cell Cycle 2011; 10:4098-109. [PMID: 22134138 DOI: 10.4161/cc.10.23.18227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Artemis, a member of the SNM1 gene family, is a multifunctional phospho-protein that has been shown to have important roles in V(D)J recombination, DNA double strand break repair, and stress-induced cell-cycle checkpoint regulation. We show here that Artemis interacts with the Cul4A-DDB1 E3 ubiquitin ligase via a direct interaction with the substrate-specificity receptor DDB2. Furthermore, Artemis also interacts with the CDK inhibitor and tumor suppressor p27, a substrate of the Cul4A-DDB1 ligase, and both DDB2 and Artemis are required for the degradation of p27 mediated by this complex. We also show that the regulation of p27 by Artemis and DDB2 is important for cell cycle progression in normally proliferating cells and in response to serum deprivation. These findings thus define a function for Artemis as an effector of Cullin-based E3 ligase-mediated ubiquitylation, demonstrate a novel pathway for the regulation of p27, and show that Cul4A-DDB1(DDB2-Artemis) regulates G1 phase cell cycle progression in mammalian cells.
Collapse
Affiliation(s)
- Yiyi Yan
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
23
|
Wang AT, Sengerová B, Cattell E, Inagawa T, Hartley JM, Kiakos K, Burgess-Brown NA, Swift LP, Enzlin JH, Schofield CJ, Gileadi O, Hartley JA, McHugh PJ. Human SNM1A and XPF-ERCC1 collaborate to initiate DNA interstrand cross-link repair. Genes Dev 2011; 25:1859-70. [PMID: 21896658 PMCID: PMC3175721 DOI: 10.1101/gad.15699211] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/20/2011] [Indexed: 12/24/2022]
Abstract
One of the major DNA interstrand cross-link (ICL) repair pathways in mammalian cells is coupled to replication, but the mechanistic roles of the critical factors involved remain largely elusive. Here, we show that purified human SNM1A (hSNM1A), which exhibits a 5'-3' exonuclease activity, can load from a single DNA nick and digest past an ICL on its substrate strand. hSNM1A-depleted cells are ICL-sensitive and accumulate replication-associated DNA double-strand breaks (DSBs), akin to ERCC1-depleted cells. These DSBs are Mus81-induced, indicating that replication fork cleavage by Mus81 results from the failure of the hSNM1A- and XPF-ERCC1-dependent ICL repair pathway. Our results reveal how collaboration between hSNM1A and XPF-ERCC1 is necessary to initiate ICL repair in replicating human cells.
Collapse
Affiliation(s)
- Anderson T. Wang
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Blanka Sengerová
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Emma Cattell
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Takabumi Inagawa
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Janet M. Hartley
- Cancer Research UK Drug–DNA Interactions Research Group, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Konstantinos Kiakos
- Cancer Research UK Drug–DNA Interactions Research Group, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | | | - Lonnie P. Swift
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Jacqueline H. Enzlin
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - John A. Hartley
- Cancer Research UK Drug–DNA Interactions Research Group, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Peter J. McHugh
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
24
|
Pawelczak KS, Bennett SM, Turchi JJ. Coordination of DNA-PK activation and nuclease processing of DNA termini in NHEJ. Antioxid Redox Signal 2011; 14:2531-43. [PMID: 20698792 PMCID: PMC3096510 DOI: 10.1089/ars.2010.3368] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA double-strand breaks (DSB), particularly those induced by ionizing radiation (IR), are complex lesions that can be cytotoxic if not properly repaired. IR-induced DSB often have DNA termini modifications, including thymine glycols, ring fragmentation, 3'-phosphoglycolates, 5'-hydroxyl groups, and abasic sites. Nonhomologous end joining (NHEJ) is a major pathway responsible for the repair of these complex breaks. Proteins involved in NHEJ include the Ku 70/80 heterodimer, DNA-PKcs, processing proteins including Artemis and DNA polymerases μ and λ, XRCC4, DNA ligase IV, and XLF. We will discuss the role of the physical and functional interactions of DNA-PK as a result of activation, with an emphasis on DNA structure, chemistry, and sequence. With the diversity of IR induced DSB, it is becoming increasingly clear that multiple DNA processing enzymes are likely necessary for effective repair of a break. We will explore the roles of several important processing enzymes, with a focus on the nuclease Artemis and its role in processing diverse DSB. The effect of DNA termini on both DNA-PK and Artemis activity will be analyzed from a structural and biochemical view.
Collapse
Affiliation(s)
- Katherine S Pawelczak
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 980 W. Walnut St., Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
25
|
Ho TV, Guainazzi A, Derkunt SB, Enoiu M, Schärer OD. Structure-dependent bypass of DNA interstrand crosslinks by translesion synthesis polymerases. Nucleic Acids Res 2011; 39:7455-64. [PMID: 21666254 PMCID: PMC3177197 DOI: 10.1093/nar/gkr448] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
DNA interstrand crosslinks (ICLs), inhibit DNA metabolism by covalently linking two strands of DNA and are formed by antitumor agents such as cisplatin and nitrogen mustards. Multiple complex repair pathways of ICLs exist in humans that share translesion synthesis (TLS) past a partially processed ICL as a common step. We have generated site-specific major groove ICLs and studied the ability of Y-family polymerases and Pol ζ to bypass ICLs that induce different degrees of distortion in DNA. Two main factors influenced the efficiency of ICL bypass: the length of the dsDNA flanking the ICL and the length of the crosslink bridging two bases. Our study shows that ICLs can readily be bypassed by TLS polymerases if they are appropriately processed and that the structure of the ICL influences which polymerases are able to read through it.
Collapse
Affiliation(s)
- The Vinh Ho
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | | | | | | |
Collapse
|
26
|
Garner E, Smogorzewska A. Ubiquitylation and the Fanconi anemia pathway. FEBS Lett 2011; 585:2853-60. [PMID: 21605559 DOI: 10.1016/j.febslet.2011.04.078] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 04/29/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
The Fanconi anemia (FA) pathway maintains genome stability through co-ordination of DNA repair of interstrand crosslinks (ICLs). Disruption of the FA pathway yields hypersensitivity to interstrand crosslinking agents, bone marrow failure and cancer predisposition. Early steps in DNA damage dependent activation of the pathway are governed by monoubiquitylation of FANCD2 and FANCI by the intrinsic FA E3 ubiquitin ligase, FANCL. Downstream FA pathway components and associated factors such as FAN1 and SLX4 exhibit ubiquitin-binding motifs that are important for their DNA repair function, underscoring the importance of ubiquitylation in FA pathway mediated repair. Importantly, ubiquitylation provides the foundations for cross-talk between repair pathways, which in concert with the FA pathway, resolve interstrand crosslink damage and maintain genomic stability.
Collapse
Affiliation(s)
- Elizabeth Garner
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
27
|
Akhter S, Lam YC, Chang S, Legerski RJ. The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development. Aging Cell 2010; 9:1047-56. [PMID: 20854421 DOI: 10.1111/j.1474-9726.2010.00631.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Conserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice.
Collapse
Affiliation(s)
- Shamima Akhter
- Department of Genetics, The UT MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
28
|
Yan Y, Akhter S, Zhang X, Legerski R. The multifunctional SNM1 gene family: not just nucleases. Future Oncol 2010; 6:1015-29. [PMID: 20528238 DOI: 10.2217/fon.10.47] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The archetypical member of the SNM1 gene family was discovered 30 years ago in the budding yeast Saccharomyces cerevisiae. This small but ubiquitous gene family is characterized by metallo-beta-lactamase and beta-CASP domains, which together have been demonstrated to comprise a nuclease activity. Three mammalian members of this family, SNM1A, SNM1B/Apollo and Artemis, have been demonstrated to play surprisingly divergent roles in cellular metabolism. These pathways include variable (diversity) joining recombination, nonhomologous end-joining of double-strand breaks, DNA damage and mitotic cell cycle checkpoints, telomere maintenance and protein ubiquitination. Not all of these functions are consistent with a model in which these proteins act only as nucleases, and indicate that the SNM1 gene family encodes multifunctional products that can act in diverse biochemical pathways. In this article we discuss the various functions of SNM1A, SNM1B/Apollo and Artemis.
Collapse
Affiliation(s)
- Yiyi Yan
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|