1
|
Schuetz JM, Grundy A, Lee DG, Lai AS, Kobayashi LC, Richardson H, Long J, Zheng W, Aronson KJ, Spinelli JJ, Brooks-Wilson AR. Genetic variants in genes related to inflammation, apoptosis and autophagy in breast cancer risk. PLoS One 2019; 14:e0209010. [PMID: 30601841 PMCID: PMC6314637 DOI: 10.1371/journal.pone.0209010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Inflammation contributes to breast cancer development through its effects on cell damage. This damage is usually dealt with by key genes involved in apoptosis and autophagy pathways. METHODS We tested 206 single nucleotide polymorphisms (SNPs) in 54 genes related to inflammation, apoptosis and autophagy in a population-based breast cancer study of women of European (658 cases and 795 controls) and East Asian (262 cases and 127 controls) descent. Logistic regression was used to estimate odds ratios for breast cancer risk, and case-only analysis to compare breast cancer subtypes (defined by ER/PR/HER2 status), with adjustment for confounders. We assessed statistical interactions between the SNPs and lifestyle factors (smoking status, physical activity and body mass index). RESULTS AND CONCLUSION Although no SNP was associated with breast cancer risk among women of European descent, we found evidence for an association among East Asians for rs1800925 (IL-13) and breast cancer risk (OR = 2.08; 95% CI: 1.32-3.28; p = 0.000779), which remained statistically significant after multiple testing correction (padj = 0.0350). This association was replicated in a meta-analysis of 4305 cases and 4194 controls in the Shanghai Breast Cancer Genetics Study (OR 1.12, 95% CI: 1.03-1.21, p = 0.011). Further, we found evidence of an interaction between rs7874234 (TSC1) and physical activity among women of East Asian descent.
Collapse
Affiliation(s)
- Johanna M. Schuetz
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Anne Grundy
- CRCHUM (Centre de recherche du Centre hospitalier de l’Université de Montréal), Montreal, QC, Canada
- Department of Social and Preventive Medicine, Université de Montréal, Montreal, QC, Canada
| | - Derrick G. Lee
- Department of Cancer Control Research, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Mathematics, Statistics, and Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Agnes S. Lai
- Department of Cancer Control Research, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Lindsay C. Kobayashi
- Harvard Center for Population and Development Studies, Harvard T. H. Chan School of Public Health, Cambridge, MA, United States of America
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
| | - Harriet Richardson
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen’s University, Kingston, ON, Canada
| | - Jirong Long
- Vanderbilt Epidemiology Centre, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Wei Zheng
- Vanderbilt Epidemiology Centre, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Kristan J. Aronson
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen’s University, Kingston, ON, Canada
| | - John J. Spinelli
- Department of Cancer Control Research, British Columbia Cancer Agency, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Angela R. Brooks-Wilson
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
2
|
Maresca L, Lodovichi S, Lorenzoni A, Cervelli T, Monaco R, Spugnesi L, Tancredi M, Falaschi E, Zavaglia K, Landucci E, Roncella M, Congregati C, Gadducci A, Naccarato AG, Caligo MA, Galli A. Functional Interaction Between BRCA1 and DNA Repair in Yeast May Uncover a Role of RAD50, RAD51, MRE11A, and MSH6 Somatic Variants in Cancer Development. Front Genet 2018; 9:397. [PMID: 30283497 PMCID: PMC6156519 DOI: 10.3389/fgene.2018.00397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/31/2018] [Indexed: 01/07/2023] Open
Abstract
In this study, we determined if BRCA1 partners involved in DNA double-strand break (DSB) and mismatch repair (MMR) may contribute to breast and ovarian cancer development. Taking advantage the functional conservation of DNA repair pathways between yeast and human, we expressed several BRCA1 missense variants in DNA repair yeast mutants to identify functional interaction between BRCA1 and DNA repair in BRCA1-induced genome instability. The pathogenic p.C61G, pA1708E, p.M775R, and p.I1766S, and the neutral pS1512I BRCA1 variants increased intra-chromosomal recombination in the DNA-repair proficient strain RSY6. In the mre11, rad50, rad51, and msh6 deletion strains, the BRCA1 variants p.C61G, pA1708E, p.M775R, p.I1766S, and pS1215I did not increase intra-chromosomal recombination suggesting that a functional DNA repair pathway is necessary for BRCA1 variants to determine genome instability. The pathogenic p.C61G and p.I1766S and the neutral p.N132K, p.Y179C, and p.N550H variants induced a significant increase of reversion in the msh2Δ strain; the neutral p.Y179C and the pathogenic p.I1766S variant induced gene reversion also, in the msh6Δ strain. These results imply a functional interaction between MMR and BRCA1 in modulating genome instability. We also performed a somatic mutational screening of MSH6, RAD50, MRE11A, and RAD51 genes in tumor samples from 34 patients and identified eight pathogenic or predicted pathogenic rare missense variants: four in MSH6, one in RAD50, one in MRE11A, and two in RAD51. Although we found no correlation between BRCA1 status and these somatic DNA repair variants, this study suggests that somatic missense variants in DNA repair genes may contribute to breast and ovarian tumor development.
Collapse
Affiliation(s)
- Luisa Maresca
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Samuele Lodovichi
- Yeast Genetics and Genomics, Institute of Clinical Physiology, CNR Pisa, Pisa, Italy.,PhD Program in Clinical and Translational Sciences, University of Pisa, Pisa, Italy
| | - Alessandra Lorenzoni
- Yeast Genetics and Genomics, Institute of Clinical Physiology, CNR Pisa, Pisa, Italy
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Institute of Clinical Physiology, CNR Pisa, Pisa, Italy
| | - Rossella Monaco
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Laura Spugnesi
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Mariella Tancredi
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Elisabetta Falaschi
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Katia Zavaglia
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | | | | | - Caterina Congregati
- Department of Clinical and Experimental Medicine, Division of Internal Medicine, University Hospital of Pisa, Pisa, Italy
| | - Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University Hospital of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, University Hospital of Pisa, Pisa, Italy
| | - Maria Adelaide Caligo
- Molecular Genetics Unit, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics, Institute of Clinical Physiology, CNR Pisa, Pisa, Italy
| |
Collapse
|
3
|
Qiao L, Feng X, Wang G, Zhou B, Yang Y, Li M. Polymorphisms in BER genes and risk of breast cancer: evidences from 69 studies with 33760 cases and 33252 controls. Oncotarget 2018; 9:16220-16233. [PMID: 29662639 PMCID: PMC5882330 DOI: 10.18632/oncotarget.23804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
Recently, numerous studies have reported an association between single nucleotide polymorphisms in base-excision repair genes and the risk of developing breast cancer, however there is no consensus. The aim of this meta-analysis was to review and quantitatively assess the relationship between single nucleotide polymorphisms in base-excision repair genes and breast cancer risk. The results suggested that a mutation of T to G in rs1760944 may lead to a higher risk of developing breast cancer in the Mongoloid population, and G to A of rs25487 significantly reduced the risk of breast cancer in Mongoloid and Caucasoid populations. In contrast to the CC and CG genotypes, the GG genotype of rs1052133 located on theOGG1 gene appeared to be a protective factor against developing breast cancer in both Mongoloid and Caucasoid populations. There was no evidence to suggest that rs25489, rs1799782, rs1130409, rs1805414 and rs1136410 were associated with breast cancer risk. In conclusion, this study provides evidence to support the theory that DNA repair genes are associated with breast cancer risk, providing information to further understand breast cancer etiology. and The potential biological pathways linking DNA repair, ethnic background, environment and breast cancer require further investigation.
Collapse
Affiliation(s)
- Lele Qiao
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaoshan Feng
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Gongping Wang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Bo Zhou
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yantong Yang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Mengxiang Li
- Henan University of Science and Technology, LuoYang, Henan, 471023, China
| |
Collapse
|
4
|
Thakkar DN, Kodidela S, Sandhiya S, Dubashi B, Dkhar SA. A Polymorphism Located Near PMAIP1/Noxa Gene Influences Susceptibility to Hodgkin Lymphoma Development in South India. Asian Pac J Cancer Prev 2017; 18:2477-2483. [PMID: 28952280 PMCID: PMC5720654 DOI: 10.22034/apjcp.2017.18.9.2477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Single nucleotide polymorphisms (SNPs) in DNA repair and Toll-like receptor (TLR) genes have been reported to be associated with Hodgkin Lymphoma (HL) risk. Since such associations may be ethnicity dependent, polymorphisms in TLR4 rs1554973, Xeroderma pigmentosum C (XPC) rs2228000, rs2228001 and a variant near PMAIP1/Noxa gene rs8093763 were here investigated with regard to HL susceptibility in a south Indian population. Normative frequencies of SNPs were established and compared with data for 1000 genome populations. Methods: We conducted a case control study consisting of 200 healthy volunteers and 101 cases with HL. DNA samples were genotyped using real-time PCR. Linkage disequilibrium (LD) analysis between rs2228000 and rs2228001 was performed using HaploView (version 4.2). Results: Among the studied variants, we observed that a variant rs8093763 located near PMAIP1/Noxa gene was associated with HL risk (OR=1.72 and 95% CI=1.004-2.93). The major allele frequencies of XPC (rs2228000 and rs2228001), TLR4 (rs1554973) and PMAIP1/NOXA (rs8093763) variants were 79%, 66%, 67% and 59% respectively. The studied frequencies were significantly different from 1000 genome populations. Conclusion: The results suggest that a variant rs8093763 located near the PMAIP1/Noxa gene may modify risk of HL. We found variation in distribution of polymorphic frequencies between the study population and 1000 genome populations. The results may help identify individual risk of development of HL in our south Indian population.
Collapse
Affiliation(s)
- Dimpal N Thakkar
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Gorimedu, Puducherry, India.
| | | | | | | | | |
Collapse
|
5
|
Wu J, Fang M, Zhou X, Zhu B, Yang Z. Paraoxonase 1 gene polymorphisms are associated with an increased risk of breast cancer in a population of Chinese women. Oncotarget 2017; 8:25362-25371. [PMID: 28445984 PMCID: PMC5421936 DOI: 10.18632/oncotarget.15911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/15/2017] [Indexed: 12/14/2022] Open
Abstract
In this study, we explored associations between paraoxonase 1 (PON1) L55M and Q192R gene polymorphisms and the risk of breast cancer in 365 female breast cancer patients and 378 healthy controls from the Guangxi region of southern China. The LM heterozygous and MM homozygous genotypes, as well as M carrier status and M alleles, were associated with an increased risk of breast cancer. In addition, the M allele was associated with postmenopausal status and increased nodal involvement. In contrast, none of the Q192R genotypes or alleles were associated with a change in breast cancer risk, or with any of the clinicopathological parameters. These results indicate that PON1 L55M genetic polymorphisms may be associated with the risk of breast cancer and could potentially serve as useful genetic markers for tumor prognosis in some populations of Chinese women.
Collapse
Affiliation(s)
- Junrong Wu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Min Fang
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoping Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530022, Guangxi, China
| | - Bo Zhu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhi Yang
- Department of Nuclear Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| |
Collapse
|