1
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. The respiratory health effects of acute in vivo diesel and biodiesel exhaust in a mouse model. CHEMOSPHERE 2024; 362:142621. [PMID: 38880256 DOI: 10.1016/j.chemosphere.2024.142621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Biodiesel, a renewable diesel fuel that can be created from almost any natural fat or oil, is promoted as a greener and healthier alternative to commercial mineral diesel without the supporting experimental data to back these claims. The aim of this research was to assess the health effects of acute exposure to two types of biodiesel exhaust, or mineral diesel exhaust or air as a control in mice. Male BALB/c mice were exposed for 2-hrs to diluted exhaust obtained from a diesel engine running on mineral diesel, Tallow biodiesel or Canola biodiesel. A room air exposure group was used as a control. Twenty-four hours after exposure, a variety of respiratory related end point measurements were assessed, including lung function, responsiveness to methacholine and airway and systemic immune responses. RESULTS Tallow biodiesel exhaust exposure resulted in the greatest number of significant effects compared to Air controls, including increased airway hyperresponsiveness (178.1 ± 31.3% increase from saline for Tallow biodiesel exhaust exposed mice compared to 155.8 ± 19.1 for Air control), increased airway inflammation (63463 ± 13497 cells/mL in the bronchoalveolar lavage of Tallow biodiesel exhaust exposed mice compared to 40561 ± 11800 for Air exposed controls) and indications of immune dysregulation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer significant effects compared to Air controls with a slight increase in airway resistance at functional residual capacity and indications of immune dysregulation. Exposure to mineral diesel exhaust resulted in significant effects between that of the two biodiesels with increased airway hyperresponsiveness and indications of immune dysregulation. CONCLUSION These data show that a single, brief exposure to biodiesel exhaust can result in negative health impacts in a mouse model, and that the biological effects of exposure change depending on the feedstock used to make the biodiesel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia.
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA, 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia
| |
Collapse
|
2
|
Romero-Mesones C, de Homdedeu M, Soler-Segovia D, Gómez-Ollés C, Espejo-Castellanos D, Ojanguren I, Saez-Gimenez B, Cruz MJ, Munoz X. The Impact of the Reduction in Environmental Pollution during COVID-19 Lockdown on Healthy Individuals. TOXICS 2024; 12:492. [PMID: 39058144 PMCID: PMC11280586 DOI: 10.3390/toxics12070492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
The lockdown imposed to combat the COVID-19 pandemic produced a historic fall in air pollution in cities like Barcelona. This exceptional situation offered a unique context in which to examine the effects of air pollutants on human health. The present study aims to determine and compare the oxidative stress biomarkers Th1/Th2 and inflammatory-related cytokines in healthy individuals first during lockdown and then six months after the easing of the restrictions on mobility. A prospective study of a representative sample of 58 healthy, non-smoking adults was carried out. During lockdown and six months post-easing of restrictions, blood samples were drawn to measure the percentage of eosinophils, levels of Th1/Th2 and inflammatory-related cytokines assessed by a multiplex assay (BioRad Laboratories S.A., Marnes-la-Coquette, France), and levels of 8-isoprostane, glutathione peroxidase activity, and myeloperoxidase (Cayman Chemical Co., Ann Arbor, MI, USA), to assess their value as biomarkers of oxidative stress. Six months after easing mobility restrictions, increases in the levels of 8-isoprostane (p < 0.0001), IL-1β (p = 0.0013), IL-1ra (p = 0.0110), IL-4 (p < 0.0001), IL-13 (p < 0.0001), G-CSF (p = 0.0007), and CCL3 (p < 0.0001) were recorded, along with reductions in glutathione peroxidase (p < 0.0001), IFN-γ (p = 0.0145), TNFα (p < 0.0001), IP-10 (p < 0.0001), IL-2 (p < 0.0001), IL-7 (p < 0.0001), basic FGF (p < 0.0001), CCL4 (p < 0.0001), and CCL5 (p < 0.0001). No significant differences were observed in the rest of the biomarkers analyzed. The reduction in environmental pollution during the COVID-19 lockdown significantly lowered the levels of oxidative stress, systemic inflammation, and Th2-related cytokines in healthy people.
Collapse
Affiliation(s)
- Christian Romero-Mesones
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (C.R.-M.); (M.d.H.); (D.S.-S.); (C.G.-O.); (D.E.-C.); (I.O.); (B.S.-G.); (X.M.)
- CIBER Enfermedades Respiratorias (CibeRes), 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Miquel de Homdedeu
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (C.R.-M.); (M.d.H.); (D.S.-S.); (C.G.-O.); (D.E.-C.); (I.O.); (B.S.-G.); (X.M.)
- CIBER Enfermedades Respiratorias (CibeRes), 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - David Soler-Segovia
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (C.R.-M.); (M.d.H.); (D.S.-S.); (C.G.-O.); (D.E.-C.); (I.O.); (B.S.-G.); (X.M.)
- CIBER Enfermedades Respiratorias (CibeRes), 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Carlos Gómez-Ollés
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (C.R.-M.); (M.d.H.); (D.S.-S.); (C.G.-O.); (D.E.-C.); (I.O.); (B.S.-G.); (X.M.)
- CIBER Enfermedades Respiratorias (CibeRes), 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - David Espejo-Castellanos
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (C.R.-M.); (M.d.H.); (D.S.-S.); (C.G.-O.); (D.E.-C.); (I.O.); (B.S.-G.); (X.M.)
- CIBER Enfermedades Respiratorias (CibeRes), 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Inigo Ojanguren
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (C.R.-M.); (M.d.H.); (D.S.-S.); (C.G.-O.); (D.E.-C.); (I.O.); (B.S.-G.); (X.M.)
- CIBER Enfermedades Respiratorias (CibeRes), 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Berta Saez-Gimenez
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (C.R.-M.); (M.d.H.); (D.S.-S.); (C.G.-O.); (D.E.-C.); (I.O.); (B.S.-G.); (X.M.)
| | - María-Jesús Cruz
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (C.R.-M.); (M.d.H.); (D.S.-S.); (C.G.-O.); (D.E.-C.); (I.O.); (B.S.-G.); (X.M.)
- CIBER Enfermedades Respiratorias (CibeRes), 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xavier Munoz
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (C.R.-M.); (M.d.H.); (D.S.-S.); (C.G.-O.); (D.E.-C.); (I.O.); (B.S.-G.); (X.M.)
- CIBER Enfermedades Respiratorias (CibeRes), 28029 Madrid, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Dwivedi S, Sharma P, Goel A, Khattri S, Misra S, Pant KK. Occupational and Environmental Exposure Influences the Inflammatory (Pro-and Anti-) Status in Benign Prostate Hyperplasia and Prostate Carcinoma Patients: A Retrospective Analysis. Indian J Clin Biochem 2024; 39:241-247. [PMID: 38577138 PMCID: PMC10987436 DOI: 10.1007/s12291-023-01112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Multiple diseases and disorders are connected with occupational and environmental exposure risk. It is also well-established that chemicals and chemical mixtures have an influence on the immune cells of humans. This is an important field of research that has been pursued extensively in relation to autoimmune illnesses, allergy/asthma, and lung cancer, but Prostate Carcinoma has received rare reports. Chronic chemical exposure is known to produce inflammation, which is one of the most prominent characteristics of all malignancies. Changes in the ratio of pro-inflammatory to anti-inflammatory molecules are thought to be a key factor in the emergence of inflammation. Prostate gland cells express the pro-inflammatory cytokine interleukin-18 (IL-18), which is a major facilitator of immunological responses. Conversely, interleukin-10 (IL-10) is an anti-inflammatory cytokine that is linked to immune responses and inhibits the development of an inflammatory environment. Our goal is to investigate the inflammatory status of IL-18 (pro-) and IL-10 (anti-) in a variety of occupationally exposed populations in patients with Benign Prostate Hyperplasia (BPH) and patients with Prostate Carcinoma. The present study was conducted with 664 subjects, comprising 285 Prostate Carcinoma patients, 94 BPH patients and 285 controls. The subjects of BPH and Prostate Carcinoma were screened and confirmed on the basis of Prostate Serum Antigen (PSA) and pathological biopsy. All subjects were categorized as per their occupational exposure into various groups. The pro-inflammatory and anti-inflammatory Interleukins (IL-18 and IL-10) and serum PSA levels were analysed by using corresponding quantitative ELISA kits. The results showed that as compared to control participants, the serum PSA levels were higher in the Prostate Carcinoma and BPH groups. When mean levels of IL-18 were compared between various occupational groups, Tanners (tanning industry), Agriculture, and Ordnance workers had significantly higher levels (P < 0.05) of IL-18 than sedentary workers. The pro-inflammatory cytokine (IL-18) levels were also found to be aggravated in Prostate Carcinoma compared to BPH and controls. According to the findings of the current study, the levels of inflammatory cytokines (IL-18 and IL-10) in various occupational groups of BPH, Prostate Carcinoma, and controls were altered. Long-term occupational exposure may have a negative influence on inflammation levels and the immune system; therefore, preventative measures should be explored for improved health.
Collapse
Affiliation(s)
- Shailendra Dwivedi
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, 273008 India
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 243005 India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 243005 India
| | - Apul Goel
- Department of Urology, King George Medical University, Lucknow, 226003 India
| | - Sanjay Khattri
- Department of Pharmacology and Therapeutics, King George Medical University, Lucknow, 226003 India
| | - Sanjeev Misra
- Department of Surgical Oncology, King George Medical University, Lucknow, India
- Atal Bihari Vajpayee Medical University, Lucknow, 226003 India
| | - Kamlesh Kumar Pant
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 243005 India
| |
Collapse
|
4
|
Xu L, Li Y, Ma W, Sun X, Fan R, Jin Y, Chen N, Zhu X, Guo H, Zhao K, Luo J, Li C, Zheng Y, Yu D. Diesel exhaust particles exposure induces liver dysfunction: Exploring predictive potential of human circulating microRNAs signature relevant to liver injury risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132060. [PMID: 37454487 DOI: 10.1016/j.jhazmat.2023.132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Diesel exhaust particles (DEP) pollution should be taken seriously because it is an extensive environmental and occupational health concern. Exploring early effect biomarkers is crucial for monitoring and managing DEP-associated health risk assessment. Here, we found that serum levels of 67 miRNAs were dysregulated in DEP exposure group. Notably, 20 miRNAs were identified as each having a significant dose-response relationship with the internal exposure level of DEP. Further, we revealed that the DEP exposure could affect the liver function of subjects and that 7 miRNAs (including the well-known liver injury indicator, miR-122-5p) could serve as the novel epigenetic-biomarkers (epi-biomarkers) to reflect the liver-specific response to the DEP exposure. Importantly, an unprecedented prediction model using these 7 miRNAs was established for the assessment of DEP-induced liver injury risk. Finally, bioinformatic analysis indicated that the unique set of miRNA panel in serum might also contribute to the molecular mechanism of DEP exposure-induced liver damage. These results broaden our understanding of the adverse health outcomes of DEP exposure. Noteworthy, we believe this study could shed light on roles and functions of epigenetic biomarkers from environmental exposure to health outcomes by revealing the full chain of exposure-miRNAs-molecular pathways-disease evidence.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- School of Public Health, Qingdao University, Qingdao, China
| | - Rongrong Fan
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Huan Guo
- School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Wong JY, Blechter B, Bassig BA, Dai Y, Vermeulen R, Hu W, Rahman ML, Duan H, Niu Y, Downward GS, Leng S, Ji BT, Fu W, Xu J, Meliefste K, Zhou B, Yang J, Ren D, Ye M, Jia X, Meng T, Bin P, Hosgood HD, Rothman N, Silverman DT, Zheng Y, Lan Q. Alterations to biomarkers related to long-term exposure to diesel exhaust at concentrations below occupational exposure limits in the European Union and the USA. Occup Environ Med 2023; 80:260-267. [PMID: 36972977 PMCID: PMC10337808 DOI: 10.1136/oemed-2022-108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND We previously found that occupational exposure to diesel engine exhaust (DEE) was associated with alterations to 19 biomarkers that potentially reflect the mechanisms of carcinogenesis. Whether DEE is associated with biological alterations at concentrations under existing or recommended occupational exposure limits (OELs) is unclear. METHODS In a cross-sectional study of 54 factory workers exposed long-term to DEE and 55 unexposed controls, we reanalysed the 19 previously identified biomarkers. Multivariable linear regression was used to compare biomarker levels between DEE-exposed versus unexposed subjects and to assess elemental carbon (EC) exposure-response relationships, adjusted for age and smoking status. We analysed each biomarker at EC concentrations below the US Mine Safety and Health Administration (MSHA) OEL (<106 µg/m3), below the European Union (EU) OEL (<50 µg/m3) and below the American Conference of Governmental Industrial Hygienists (ACGIH) recommendation (<20 µg/m3). RESULTS Below the MSHA OEL, 17 biomarkers were altered between DEE-exposed workers and unexposed controls. Below the EU OEL, DEE-exposed workers had elevated lymphocytes (p=9E-03, false discovery rate (FDR)=0.04), CD4+ count (p=0.02, FDR=0.05), CD8+ count (p=5E-03, FDR=0.03) and miR-92a-3p (p=0.02, FDR=0.05), and nasal turbinate gene expression (first principal component: p=1E-06, FDR=2E-05), as well as decreased C-reactive protein (p=0.02, FDR=0.05), macrophage inflammatory protein-1β (p=0.04, FDR=0.09), miR-423-3p (p=0.04, FDR=0.09) and miR-122-5p (p=2E-03, FDR=0.02). Even at EC concentrations under the ACGIH recommendation, we found some evidence of exposure-response relationships for miR-423-3p (ptrend=0.01, FDR=0.19) and gene expression (ptrend=0.02, FDR=0.19). CONCLUSIONS DEE exposure under existing or recommended OELs may be associated with biomarkers reflective of cancer-related processes, including inflammatory/immune response.
Collapse
Affiliation(s)
- Jason Yy Wong
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, Bethesda, Maryland, USA
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Batel Blechter
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Bryan A Bassig
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Roel Vermeulen
- The Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Mohammad L Rahman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - George S Downward
- The Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Shuguang Leng
- Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Bu-Tian Ji
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Lianing, China
| | - Jun Xu
- Division of Community Medicine and Public Health Practice, Hong Kong University, Hong Kong, Hong Kong, China
| | - Kees Meliefste
- The Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Baosen Zhou
- China Medical University, Liaoning, Shenyang, China
| | - Jufang Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Lianing, China
| | - Dianzhi Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Lianing, China
| | - Meng Ye
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaowei Jia
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Bin
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - H Dean Hosgood
- Division of Epidemiology, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Respiratory Health Effects of In Vivo Sub-Chronic Diesel and Biodiesel Exhaust Exposure. Int J Mol Sci 2023; 24:ijms24065130. [PMID: 36982203 PMCID: PMC10049281 DOI: 10.3390/ijms24065130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels. Male BALB/c mice (n = 24 per group) were exposed for 2 h/day for 8 days to diluted exhaust from a diesel engine running on ultra-low sulfur diesel (ULSD) or Tallow or Canola biodiesel, with room air exposures used as control. A variety of respiratory-related end-point measurements were assessed, including lung function, responsiveness to methacholine, airway inflammation and cytokine response, and airway morphometry. Exposure to Tallow biodiesel exhaust resulted in the most significant health impacts compared to Air controls, including increased airway hyperresponsiveness and airway inflammation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer negative health effects. Exposure to ULSD resulted in health impacts between those of the two biodiesels. The health effects of biodiesel exhaust exposure vary depending on the feedstock used to make the fuel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
7
|
Landwehr KR, Hillas J, Mead-Hunter R, King A, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Biodiesel feedstock determines exhaust toxicity in 20% biodiesel: 80% mineral diesel blends. CHEMOSPHERE 2023; 310:136873. [PMID: 36252896 DOI: 10.1016/j.chemosphere.2022.136873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
To address climate change concerns, and reduce the carbon footprint caused by fossil fuel use, it is likely that blend ratios of renewable biodiesel with commercial mineral diesel fuel will steadily increase, resulting in biodiesel use becoming more widespread. Exhaust toxicity of unblended biodiesels changes depending on feedstock type, however the effect of feedstock on blended fuels is less well known. The aim of this study was to assess the impact of biodiesel feedstock on exhaust toxicity of 20% blended biodiesel fuels (B20). Primary human airway epithelial cells were exposed to exhaust diluted 1/15 with air from an engine running on conventional ultra-low sulfur diesel (ULSD) or 20% blends of soy, canola, waste cooking oil (WCO), tallow, palm or cottonseed biodiesel in diesel. Physico-chemical exhaust properties were compared between fuels and the post-exposure effect of exhaust on cellular viability and media release was assessed 24 h later. Exhaust properties changed significantly between all fuels with cottonseed B20 being the most different to both ULSD and its respective unblended biodiesel. Exposure to palm B20 resulted in significantly decreased cellular viability (96.3 ± 1.7%; p < 0.01) whereas exposure to soy B20 generated the greatest number of changes in mediator release (including IL-6, IL-8 and TNF-α, p < 0.05) when compared to air exposed controls, with palm B20 and tallow B20 closely following. In contrast, canola B20 and WCO B20 were the least toxic with only mediators G-CSF and TNF-α being significantly increased. Therefore, exposure to palm B20, soy B20 and tallow B20 were found to be the most toxic and exposure to canola B20 and WCO B20 the least. The top three most toxic and the bottom three least toxic B20 fuels are consistent with their unblended counterparts, suggesting that feedstock type greatly impacts exhaust toxicity, even when biodiesel only comprises 20% of the fuel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia.
| | - Jessica Hillas
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia
| | - Andrew King
- Fluid Dynamics Research Group, School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, 6151, Western Australia, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia
| |
Collapse
|
8
|
Zhang B, Cheng S, Lu F, Lei M. Estimation of exposure and premature mortality from near-roadway fine particulate matter concentrations emitted by heavy-duty diesel trucks in Beijing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119990. [PMID: 36027625 DOI: 10.1016/j.envpol.2022.119990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/30/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Traffic exhaust is a main source of fine particulate matter (PM2.5) in cities. Heavy-duty diesel trucks (HDDTs), the primary mode of freight transport, contribute significantly to PM2.5, posing a great threat to public health. However, existing research based on dispersion models to simulate pollutant concentrations lacks high-spatiotemporal-resolution emission inventories of HDDTs as input data, and the public health effects of such emissions in different populations have not been thoroughly assessed. To fill this gap, we focused on Beijing as the research area and developed a high-resolution PM2.5 emission inventory for HDDTs based on Global Navigation Satellite System-equipped vehicle trajectory data. We then simulated the fine-scale spatial distribution of diesel-related PM2.5 and assessed the population exposure by integrating the dispersion model and population distributions. Further, we quantified the mortality attributable to noncommunicable diseases (NCDs) plus lower respiratory infections (LRIs) related to PM2.5 emissions from HDDTs. Results showed that 3.3% of Beijing people lived in areas with high PM2.5 HDDT emissions, which were near intercity highways. Furthermore, the estimated number of NCD + LRI annual premature deaths attributed to PM2.5 HDDT emissions in Beijing was 339 (95% CI: 276-401). The NCD + LRI mortality increased with age, and deaths were more frequent in males than females. Our results aid the identification of HDDT PM2.5 emission exposure hotspots for the formulation of effective mitigation measures and provide important insights into the adverse health impacts of HDDT emissions.
Collapse
Affiliation(s)
- Beibei Zhang
- State Key Laboratory of Resources and Environmental Information System, IGSNRR, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shifen Cheng
- State Key Laboratory of Resources and Environmental Information System, IGSNRR, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Feng Lu
- State Key Laboratory of Resources and Environmental Information System, IGSNRR, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Lei
- Institute of Geographic Sciences and Nature Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Wong JYY, Imani P, Grigoryan H, Bassig BA, Dai Y, Hu W, Blechter B, Rahman ML, Ji BT, Duan H, Niu Y, Ye M, Jia X, Meng T, Bin P, Downward G, Meliefste K, Leng S, Fu W, Yang J, Ren D, Xu J, Zhou B, Hosgood HD, Vermeulen R, Zheng Y, Silverman DT, Rothman N, Rappaport SM, Lan Q. Exposure to diesel engine exhaust and alterations to the Cys34/Lys525 adductome of human serum albumin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103966. [PMID: 36067935 PMCID: PMC9757949 DOI: 10.1016/j.etap.2022.103966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
We investigated whether exposure to carcinogenic diesel engine exhaust (DEE) was associated with altered adduct levels in human serum albumin (HSA) residues. Nano-liquid chromatography-high resolution mass spectrometry (nLC-HRMS) was used to measure adducts of Cys34 and Lys525 residues in plasma samples from 54 diesel engine factory workers and 55 unexposed controls. An untargeted adductomics and bioinformatics pipeline was used to find signatures of Cys34/Lys525 adductome modifications. To identify adducts that were altered between DEE-exposed and unexposed participants, we used an ensemble feature selection approach that ranks and combines findings from linear regression and penalized logistic regression, then aggregates the important findings with those determined by random forest. We detected 40 Cys34 and 9 Lys525 adducts. Among these findings, we found evidence that 6 Cys34 adducts were altered between DEE-exposed and unexposed participants (i.e., 841.75, 851.76, 856.10, 860.77, 870.43, and 913.45). These adducts were biologically related to antioxidant activity.
Collapse
Affiliation(s)
- Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Partow Imani
- School of Public Health, University of California, Berkeley, CA, USA
| | - Hasmik Grigoryan
- School of Public Health, University of California, Berkeley, CA, USA
| | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yufei Dai
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Huawei Duan
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Ye
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaowei Jia
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Bin
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - George Downward
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Kees Meliefste
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Shuguang Leng
- Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA; Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Wei Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Jufang Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Dianzhi Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Jun Xu
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Baosen Zhou
- China Medical University, Shenyang, Liaoning, China
| | - H Dean Hosgood
- Division of Epidemiology, Albert Einstein College of Medicine, New York, NY, USA
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
10
|
Darras-Hostens M, Achour D, Muntaner M, Grare C, Zarcone G, Garçon G, Amouyel P, Zerimech F, Matran R, Guidice JML, Dauchet L. Short-term and residential exposure to air pollution: Associations with inflammatory biomarker levels in adults living in northern France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:154985. [PMID: 35398417 DOI: 10.1016/j.scitotenv.2022.154985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Air pollution has an impact on health, and low-grade inflammation might be one of the underlying mechanisms. The objective of the present study of adults from northern France was to assess the associations between short-term and residential exposure to air pollution and levels of various inflammatory biomarkers. METHODS The cross-sectional Enquête Littoral Souffle Air Biologie Environnement (ELISABET) study was conducted from 2011 to 2013 in the Lille and Dunkirk urban areas of northern France. Here, we evaluated the associations between PM10, NO2 and O3 exposure (on the day of the blood sample collection and on the day before, and the mean annual residential level) and levels of the inflammatory biomarkers high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-17A, IL-22, and tumor necrosis factor α. RESULTS We assessed 3074 participants for the association with hsCRP and a subsample of 982 non-smokers from Lille for the association with plasma cytokine levels. A 10 μg/m3 increment in PM10 and NO2 levels on the day of sample collection and on the day before was associated with a higher hsCRP concentration (3.43% [0.68; 6.25] and 1.75% [-1.96; 5.61], respectively, whereas a 10 μg/m3 increment in O3 was associated with lower hsCRP concentration (-1.2% [-3.95; 1.64]). The associations between mean annual exposure and the hsCRP level were not significant. Likewise, the associations between exposure and plasma cytokine levels were not statistically significant. CONCLUSION Short-term exposure to air pollution was associated with higher serum hsCRP levels in adult residents of two urban areas in northern France. Our results suggest that along with other factors, low-grade inflammation might explain the harmful effects of air pollution on health.
Collapse
Affiliation(s)
- Marion Darras-Hostens
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Djamal Achour
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Manon Muntaner
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Céline Grare
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Gianni Zarcone
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Philippe Amouyel
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Farid Zerimech
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Régis Matran
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Jean-Marc Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Luc Dauchet
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| |
Collapse
|
11
|
Gandomani EA, Mosaffa N, Zendehdel R, Kohneshahri MH, Vahabi M, Sabour S. Release of Interleukin-1β evaluation among mineral oil mist–exposed workers. Toxicol Ind Health 2022; 38:270-276. [DOI: 10.1177/07482337221090708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to aerosols has been found to be linked to respiratory impairment. Although the effects of both indoor and outdoor exposures to particulates have been extensively reported, exposures to mists are less studied. Herein, we reported a survey of mineral oil mist toxicity in an occupational exposure scenario. For the purpose of this study, 65 lathe workers of the metal processing industry, as mineral oil mist–exposed population, were studied. Thereafter, the participants’ age, smoking habits and work experience were matched with those of the control workers ( n = 65) who were not occupationally exposed to mist. Thereafter, air samples were evaluated from the breathing zone of the workers using NIOSH method 5026. Plasma Interleukin-1β as a pro-inflammatory indicator was assessed in all the studied subjects. Mean ± standard deviation of mineral oil mist time-weighted average exposure in lathe workers was 7.10± 3.49 mg/m3. IL-1β cytokine levels were significantly higher in the lathe groups compared to the control group. The mean level of Interleukin-1β in the control subjects (2922 pg/L) was selected as the cut-off point of the inflammation effect. Based on this pro-inflammatory point, the results of monitoring showed that 60% of the exposed were affected. A Spearman correlation was also found between mineral oil mist exposure and inflammation in the affected subjects. Our findings highlighted the immunological potential of mineral oil mist in occupational exposure. Overall, the results of this study suggested that Interleukin-1β evaluation in mineral oil mist exposure could be considered as both an acute and chronic inflammation marker.
Collapse
Affiliation(s)
- Elham A Gandomani
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Zendehdel
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad H Kohneshahri
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoomeh Vahabi
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Cheng W, Pang H, Campen MJ, Zhang J, Li Y, Gao J, Ren D, Ji X, Rothman N, Lan Q, Zheng Y, Leng S, Hu Z, Tang J. Circulatory metabolites trigger ex vivo arterial endothelial cell dysfunction in population chronically exposed to diesel exhaust. Part Fibre Toxicol 2022; 19:20. [PMID: 35313899 PMCID: PMC8939222 DOI: 10.1186/s12989-022-00463-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/15/2022] [Indexed: 11/27/2022] Open
Abstract
Background Chronic exposure to diesel exhaust has a causal link to cardiovascular diseases in various environmental and occupational settings. Arterial endothelial cell function plays an important role in ensuring proper maintenance of cardiovascular homeostasis and the endothelial cell dysfunction by circulatory inflammation is a hallmark in cardiovascular diseases. Acute exposure to diesel exhaust in controlled exposure studies leads to artery endothelial cells dysfunction in previous study, however the effect of chronic exposure remains unknown. Results We applied an ex vivo endothelial biosensor assay for serum samples from 133 diesel engine testers (DETs) and 126 non-DETs with the aim of identifying evidence of increased risk for cardiovascular diseases. Environmental monitoring suggested that DETs were exposed to high levels of diesel exhaust aerosol (282.3 μg/m3 PM2.5 and 135.2 μg/m3 elemental carbon). Surprisingly, chronic diesel exhaust exposure was associated with a pro-inflammatory phenotype in the ex vivo endothelial cell model, in a dose-dependent manner with CCL5 and VCAM as most affected genes. This dysfunction was not mediated by reduction in circulatory pro-inflammatory factors but significantly associated with a reduction in circulatory metabolites cGMP and an increase in primary DNA damage in leucocyte in a dose-dependent manner, which also explained a large magnitude of association between diesel exhaust exposure and ex vivo endothelial biosensor response. Exogenous cGMP addition experiment further confirmed the induction of ex vivo biosensor gene expressions in endothelial cells treated with physiologically relevant levels of metabolites cGMP. Conclusion Serum-borne bioactivity caused the arterial endothelial cell dysfunction may attribute to the circulatory metabolites based on the ex vivo biosensor assay. The reduced cGMP and increased polycyclic aromatic hydrocarbons metabolites-induced cyto/geno-toxic play important role in the endothelial cell dysfunction of workers chronic exposure to diesel exhaust. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00463-0.
Collapse
Affiliation(s)
- Wenting Cheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Huanhuan Pang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jianzhong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Yanting Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Jinling Gao
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Dunqiang Ren
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xiaoya Ji
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Shuguang Leng
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA. .,Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China.
| |
Collapse
|
13
|
Rahman ML, Bassig BA, Dai Y, Hu W, Wong JYY, Blechter B, Hosgood HD, Ren D, Duan H, Niu Y, Xu J, Fu W, Meliefste K, Zhou B, Yang J, Ye M, Jia X, Meng T, Bin P, Silverman DT, Vermeulen R, Rothman N, Zheng Y, Lan Q. Proteomic analysis of serum in workers exposed to diesel engine exhaust. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:18-28. [PMID: 34894159 PMCID: PMC11812432 DOI: 10.1002/em.22469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Diesel engine exhaust (DEE) is classified as a Group 1 human carcinogen. Using a targeted proteomics approach, we aimed to identify proteins associated with DEE and characterize these markers to understand the mechanisms of DEE-induced carcinogenicity. In this cross-sectional molecular epidemiology study, we measured elemental carbon (EC) using a personal air monitor and quantified 1317 targeted proteins in the serum using the SOMAScan assay (SOMALogic) among 19 diesel exposed factory workers and 19 unexposed controls. We used linear regressions to identify proteins associated with DEE and examined their exposure-response relationship across levels of EC using linear trend tests. We further examined pathway enrichment of DEE-related proteins using MetaCore. Occupational exposure to DEE was associated with altered levels of 22 serum proteins (permutation p < .01). Of these, 13 proteins (CXCL11, HAPLN1, FLT4, CD40LG, PES1, IGHE.IGK..IGL, TNFSF9, PGD, NAGK, CCL25, CCL4L1, PDXK, and PLA2G1B) showed an exposure-response relationship with EC (p trend < .01), with serum levels of all but PLA2G1B declining with increasing air levels of EC. For instance, C-X-C Motif Chemokine Ligand 11 (CXCL11) showed the most significant association with DEE (β = -0.25; permutation p = .00004), where mean serum levels were 4121.1, 2356.7, and 2298.8 relative fluorescent units among the unexposed, lower exposed (median, range : 56.9, 40.2-62.1 μg/m3 EC), and higher exposed (median, range of EC: 72.9, 66.9-107.7 μg/m3 EC) groups, respectively (p trend = .0005). Pathway analysis suggested that these proteins are enriched in pathways related to inflammation and immune regulation. Our study suggests that DEE exposure is associated with altered serum proteins, which play a role in inflammation and immune regulation.
Collapse
Affiliation(s)
- Mohammad L. Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Bryan A. Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yufei Dai
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jason YY. Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - H. Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danzhi Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, People’s Republic of China
| | - Huawei Duan
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yong Niu
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jun Xu
- School of Public Health, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wei Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, People’s Republic of China
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| | - Jufang Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, People’s Republic of China
| | - Meng Ye
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiaowei Jia
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Tao Meng
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ping Bin
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Debra T. Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, People’s Republic of China
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
14
|
Landwehr KR, Hillas J, Mead-Hunter R, Brooks P, King A, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Fuel feedstock determines biodiesel exhaust toxicity in a human airway epithelial cell exposure model. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126637. [PMID: 34329109 DOI: 10.1016/j.jhazmat.2021.126637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Biodiesel is promoted as a sustainable replacement for commercial diesel. Biodiesel fuel and exhaust properties change depending on the base feedstock oil/fat used during creation. The aims of this study were, for the first time, to compare the exhaust exposure health impacts of a wide range of biodiesels made from different feedstocks and relate these effects with the corresponding exhaust characteristics. METHOD Primary airway epithelial cells were exposed to diluted exhaust from an engine running on conventional diesel and biodiesel made from Soy, Canola, Waste Cooking Oil, Tallow, Palm and Cottonseed. Exhaust properties and cellular viability and mediator release were analysed post exposure. RESULTS The exhaust physico-chemistry of Tallow biodiesel was the most different to diesel as well as the most toxic, with exposure resulting in significantly decreased cellular viability (95.8 ± 6.5%) and increased release of several immune mediators including IL-6 (+223.11 ± 368.83 pg/mL) and IL-8 (+1516.17 ± 2908.79 pg/mL) above Air controls. In contrast Canola biodiesel was the least toxic with exposure only increasing TNF-α (4.91 ± 8.61). CONCLUSION This study, which investigated the toxic effects for the largest range of biodiesels, shows that exposure to different exhausts results in a spectrum of toxic effects in vitro when combusted under identical conditions.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia.
| | - Jessica Hillas
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Peter Brooks
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Andrew King
- Fluid Dynamics Research Group, School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth 6000, Western Australia, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth 6009, Western Australia, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| |
Collapse
|
15
|
Drizik E, Corbett S, Zheng Y, Vermeulen R, Dai Y, Hu W, Ren D, Duan H, Niu Y, Xu J, Fu W, Meliefste K, Zhou B, Zhang X, Yang J, Bassig B, Liu H, Ye M, Liu G, Jia X, Meng T, Bin P, Zhang J, Silverman D, Spira A, Rothman N, Lenburg ME, Lan Q. Transcriptomic changes in the nasal epithelium associated with diesel engine exhaust exposure. ENVIRONMENT INTERNATIONAL 2020; 137:105506. [PMID: 32044442 PMCID: PMC8725607 DOI: 10.1016/j.envint.2020.105506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Diesel engine exhaust (DEE) exposure causes lung cancer, but the molecular mechanisms by which this occurs are not well understood. OBJECTIVES To assess transcriptomic alterations in nasal epithelium of DEE-exposed factory workers to better understand the cellular and molecular effects of DEE. METHODS Nasal epithelial brushings were obtained from 41 diesel engine factory workers exposed to relatively high levels of DEE (17.2-105.4 μg/m3), and 38 unexposed workers from factories without DEE exposure. mRNA was profiled for gene expression using Affymetrix microarrays. Linear modeling was used to identify differentially expressed genes associated with DEE exposure and interaction effects with current smoking status. Pathway enrichment among differentially expressed genes was assessed using EnrichR. Gene Set Enrichment Analysis (GSEA) was used to compare gene expression patterns between datasets. RESULTS 225 genes had expression associated with DEE exposure after adjusting for smoking status (FDR q < 0.25) and were enriched for genes in pathways related to oxidative stress response, cell cycle pathways such as MAPK/ERK, protein modification, and transmembrane transport. Genes up-regulated in DEE-exposed individuals were enriched among the genes most up-regulated by cigarette smoking in a previously reported bronchial airway smoking dataset. We also found that the DEE signature was enriched among the genes most altered in two previous studies of the effects of acute DEE on PBMC gene expression. An exposure-response relationship was demonstrated between air levels of elemental carbon and the first principal component of the DEE signature. CONCLUSIONS A gene expression signature was identified for workers occupationally exposed to DEE that was altered in an exposure-dependent manner and had some overlap with the effects of smoking and the effects of acute DEE exposure. This is the first study of gene expression in nasal epithelial cells of workers heavily exposed to DEE and provides new insights into the molecular alterations that occur with DEE exposure.
Collapse
Affiliation(s)
- E Drizik
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - S Corbett
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Y Zheng
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - R Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Y Dai
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - W Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - D Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - H Duan
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Y Niu
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - J Xu
- Hong Kong University, Hong Kong, China
| | - W Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - K Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - B Zhou
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaohui Zhang
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - J Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - Bryan Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Hanqiao Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - M Ye
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gang Liu
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - X Jia
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - T Meng
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - P Bin
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational, Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - J Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, NC, USA; Global Health Research Center, Duke Kunshan University, Kunshan City, Jiangsu Province, China
| | - D Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - A Spira
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Bioinformatics Program, Boston University, Boston, MA, USA; The Lung Cancer Initiative at Johnson & Johnson, Cambridge, MA, USA
| | - N Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - M E Lenburg
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Bioinformatics Program, Boston University, Boston, MA, USA.
| | - Q Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|