1
|
Introna M, Juárez-Facio AT, Srikanth Vallabani NV, Tu MH, Heikkilä P, Colombo A, Liboni V, Tsyupa B, Mancini A, Keskinen J, Olofsson U, Steimer SS, Karlsson HL, Elihn K. Toxicity of real-world PM 2.5 road tunnel emissions using a mobile Air-Liquid Interface system and submerged exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126486. [PMID: 40403919 DOI: 10.1016/j.envpol.2025.126486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/30/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Traffic-related air pollution is a major public health concern, contributing to respiratory and cardiovascular diseases worldwide. The aim of this study was to investigate the feasibility of using a mobile Air-Liquid Interface (ALI) system to assess the cytotoxicity and inflammatory potential of freshly generated PM2.5 (particle matter with aerodynamic diameter <2.5 μm) in a road tunnel in Stockholm. We hypothesized that cellular effects would be detectable at lower doses compared to submerged exposures. The mean particle dose in ALI was 1.4±0.8 μg/cm2, whereas a wide range of doses was used for submerged exposures. ALI and submerged results showed that PM2.5 from the road tunnel did not affect the viability of A549 cells, whereas a significant and dose-dependent decrease in viability of dTHP-1 (in submerged exposure) was observed. Furthermore, in A549 in ALI a slight increase in inflammatory response (IL-8, IL-6, and IL-1β) was observed. In submerged exposure, the inflammatory response was clearer, particularly in the dTHP-1 cells. In conclusion, this study presents the first successfully conducted in situ ALI exposure in a road tunnel. The results demonstrate that dTHP-1 cells exhibit clear cytotoxic and inflammatory responses, while A549 show only weak effects. These findings suggest that co-cultures of A549 and dTHP-1 may be valuable in future ALI studies.
Collapse
Affiliation(s)
- Micol Introna
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden.
| | | | | | - Ming Hui Tu
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paavo Heikkilä
- Aerosol physics laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland
| | - Andrea Colombo
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri"- IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Valentina Liboni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri"- IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Bozhena Tsyupa
- Materials Engineering & Laboratories, GCF R&D, Brembo NV, 24040 Stezzano (BG), Italy
| | - Alessandro Mancini
- Materials Engineering & Laboratories, GCF R&D, Brembo NV, 24040 Stezzano (BG), Italy
| | - Jorma Keskinen
- Aerosol physics laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Hanna Lovisa Karlsson
- Institute of Environmental Medicine, Karolinska Institute, 171 77, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
2
|
Alwanian WM. Fisetin Mitigates Chronic Lung Injury Induced by Benzo(a)Pyrene by Regulation of Inflammation and Oxidative Stress. Curr Issues Mol Biol 2025; 47:209. [PMID: 40136463 PMCID: PMC11941139 DOI: 10.3390/cimb47030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Polycyclic aromatic hydrocarbons such as Benzo(a)Pyrene, which are produced by smoking or present in air pollution, greatly contribute to lung diseases. B(a)P has been found to induce inflammation and eventually lung cancer. Fisetin, a polyphenol, abundant in many fruits and vegetables, has an appealing therapeutic potential in many disorders, including inflammation and cancer. Objectives: This study aimed to investigate the importance of fisetin in the regulation of chronic lung inflammation and oxidative stress resulting from exposure to Benzo(a)Pyrene. Methods: The effect of fisetin on rats at a concentration of 50 mg/kg was evaluated by ELISA to measure oxidative stress and inflammatory markers. The tissue architecture was also investigated using hematoxylin and eosin (H&E) staining. The expression pattern of IL-6 in lung tissues was assayed using immunohistochemistry. Fibrosis was evaluated in lung tissues using Masson Trischrome and Sirius red stains. Cell apoptosis in lung tissues was studied using a TUNEL assay. Results: After exposure to Benzo(a)Pyrene for eight weeks, the data indicated that fisetin led to a significant reduction in oxidative stress, evidenced by the reduction of SOD, MDA, NO, GPH, and GPx. Moreover, IL-6, TNF-α, and CRP levels were also decreased, indicating a reduction in inflammation. Apoptosis was reduced upon fisetin treatment. Furthermore, a significant decrease in fibrosis was also observed. Conclusions: This study reveals the importance of fisetin as a natural product in the management of chronic lung injury by protecting lung tissues from inflammation, and its use suggests better prognosis in diseases caused by exposure to B(a)P.
Collapse
Affiliation(s)
- Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
3
|
Mendoza C, Arias S, Botero ML, Agudelo JR. Hazardous gas emissions from drop-in biofuels: mutagenicity, cytotoxicity, and unregulated pollutants. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136696. [PMID: 39616848 DOI: 10.1016/j.jhazmat.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/28/2025]
Abstract
This study investigates cancer-related mutations (TA98 and YG5185 strains/Ames test), cell death (human A549 cell line/MTT assay) and unregulated pollutants (16 PAH, 13 carbonyls) from the gas exhaust emissions from a last-mile delivery vehicle following the WLTC driving cycle, operating with hydrotreated vegetable oil and biodiesel. Both biofuels were used pure and blended 20 % by volume with diesel fuel. Gas phase samples were collected using XAD-2 Amberlite® resin. Total carbonyl emission factors for the different fuels ranged from 9.4 ± 0.4 (HVO100) to 14.8 ± 1.6 mg/km (B20), while PAH emission factors ranged from 1.8 ± 0.5 (B100) to 4.3 ± 0.9 mg/km (HVO20). The ester group in biodiesel demonstrated a significant impact on increasing carbonyl emissions. All fuels were cytotoxic at the highest concentration of exhaust gases, causing more than 30 % cell death in human cell line A549 (HVO100 ≈ HVO20 > B100 ≈ B20 > ULSD). No significant correlation was found between cytotoxicity and most of PAH and carbonyls. A strong correlation between PAH and mutagenicity (Pearson correlation coefficient higher than 0.6 for PAH with 3 or more rings) was observed with strain YG5185, particularly when using the metabolic activator. These results indicate that the exhaust gases from the tested biofuels pose potential health risks, particularly in chronic exposure scenarios.
Collapse
Affiliation(s)
- Carolina Mendoza
- Grupo de Manejo Eficiente de la energía GIMEL, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvana Arias
- Grupo de Investigación Ingeniería para la Sostenibilidad, Energía y Cambio Climático ISEC², Universidad EAFIT, Carrera 49, Calle 7 Sur #50, Medellín, Colombia
| | - Maria L Botero
- Grupo de Investigación Ingeniería para la Sostenibilidad, Energía y Cambio Climático ISEC², Universidad EAFIT, Carrera 49, Calle 7 Sur #50, Medellín, Colombia
| | - John R Agudelo
- Grupo de Manejo Eficiente de la energía GIMEL, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
4
|
Carrothers S, Trevisan R, Jayasundara N, Pelletier N, Weeks E, Meyer JN, Di Giulio R, Weinhouse C. An epigenetic memory at the CYP1A gene in cancer-resistant, pollution-adapted killifish. Sci Rep 2025; 15:3033. [PMID: 39856074 PMCID: PMC11759692 DOI: 10.1038/s41598-024-82740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025] Open
Abstract
Human exposure to polycyclic aromatic hydrocarbons (PAH) is a significant public health problem that will worsen with a warming climate and increased large-scale wildfires. Here, we characterize an epigenetic memory at the cytochrome P450 1 A (CYP1A) gene in wild Fundulus heteroclitus that have adapted to chronic, extreme PAH pollution. In wild-type fish, CYP1A is highly induced by PAH. In PAH-tolerant fish, CYP1A induction is blunted. Since CYP1A metabolically activates PAH, this memory protects these fish from PAH-mediated cancer. However, PAH-tolerant fish reared in clean water recover CYP1A inducibility, indicating a non-genetic effect. We observed epigenetic control of this reversible memory of generational PAH stress in F1 PAH-tolerant embryos. We detected a bivalent domain in the CYP1A promoter enhancer comprising both activating and repressive histone post-translational modifications. Activating modifications, relative to repressive ones, showed greater increases in response to PAH in sensitive embryos, relative to tolerant, consistent with greater gene activation. PAH-tolerant adult fish showed persistent induction of CYP1A long after exposure cessation, which is consistent with defective CYP1A shutoff. These results indicate that PAH-tolerant fish have epigenetic protection against PAH-induced cancer in early life that degrades in response to continuous gene activation.
Collapse
Affiliation(s)
- Samantha Carrothers
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
| | - Nicole Pelletier
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA
| | - Emma Weeks
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
| | - Richard Di Giulio
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
| | - Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| |
Collapse
|
5
|
Goswami G, Bamola S, Agarwal M, Goyal I, Chopra A, Pandey A, Lakhani A. Chemical composition, mutagenicity, and cytotoxicity of urban submicron particulate matter (PM 1) in Agra, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176505. [PMID: 39341250 DOI: 10.1016/j.scitotenv.2024.176505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
This study, conducted in Agra, India, examined the mass concentrations, chemical compositions, and seasonal variations of submicron particles (PM1). The concentrations of metals, water-soluble inorganic ions (WSIs) including anions (F-, Cl-, NO₃-, SO₄2-) and cations (Ca2+, K+, Mg2+, NH₄+, Na+), organic carbon (OC) and elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs) in PM1 extract were determined using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), Ion Chromatography, Thermogravimetric Analysis and Gas Chromatography-Mass Spectrometry (GC-MS) respectively. For morphological observation of PM1 particles, Field Emission Scanning Electron Microscopy-Energy Dispersive X-ray spectrometry (FESEM-EDS) was used. The annual average concentration of PM1 was 82.9 ± 33.4 μg/m3, which exceeds the World Health Organisation's (WHO) safe limit for PM2.5 of 5 μg/m3 by a factor of 17. The PM1 mass composition included metals (31 %), WSIs (28 %), OC and EC (9.8 %), and PAHs (0.4 %). Winter recorded the highest PM1 concentration (96.1 ± 25.8 μg/m3), followed by post-monsoon, summer, and monsoon seasons. The average concentration of PAHs was 364.6 ± 226.6 ng/m3. Positive Matrix Factorization (PMF) identified traffic, emissions from biomass/coal and wood combustion, industrial/stationary sources, and secondary aerosols as potential contributors. The Ames test revealed the presence of frameshift mutations and base pair substitutions, especially in winter and post-monsoon. Additionally, PM1 exhibited cytotoxic effects on V-79 cells, with heightened toxicity during winter and prolonged exposure in other seasons. This study underscores the urgent need to address local emission sources and establish regulatory standards for PM1 in urban areas.
Collapse
Affiliation(s)
- Gunjan Goswami
- Department of Chemistry, Dayalbagh Educational Institute, Agra 282005, India
| | - Simran Bamola
- Department of Chemistry, Dayalbagh Educational Institute, Agra 282005, India
| | - Muskan Agarwal
- Department of Chemistry, Dayalbagh Educational Institute, Agra 282005, India
| | - Isha Goyal
- Department of Chemistry, Dayalbagh Educational Institute, Agra 282005, India
| | - Amla Chopra
- Department of Zoology, Dayalbagh Educational Institute, Agra 282005, India.
| | - Alok Pandey
- Indian Institute of Toxicology Research, Lucknow 226001, India.
| | - Anita Lakhani
- Department of Chemistry, Dayalbagh Educational Institute, Agra 282005, India.
| |
Collapse
|
6
|
Carrothers S, Trevisan R, Jayasundara N, Pelletier N, Weeks E, Meyer JN, Giulio RD, Weinhouse C. An epigenetic memory at the CYP1A gene in cancer-resistant, pollution-adapted killifish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607951. [PMID: 39185187 PMCID: PMC11343184 DOI: 10.1101/2024.08.14.607951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Human exposure to polycyclic aromatic hydrocarbons (PAH) is a significant and growing public health problem. Frequent, high dose exposures are likely to increase due to a warming climate and increased frequency of large-scale wildfires. Here, we characterize an epigenetic memory at the cytochrome P450 1A (CYP1A) gene in a population of wild Fundulus heteroclitus that has adapted to chronic, extreme PAH pollution. In wild-type fish, CYP1A is highly induced by PAH. In PAH-tolerant fish, CYP1A induction is blunted. Since CYP1A metabolically activates PAH, this memory protects these fish from PAH-mediated cancer. However, PAH-tolerant fish reared in clean water recover CYP1A inducibility, indicating that blunted induction is a non-genetic memory of prior exposure. To explore this possibility, we bred depurated wild fish from PAH-sensitive and - tolerant populations, manually fertilized exposure-naïve embryos, and challenged them with PAH. We observed epigenetic control of the reversible memory of generational PAH stress in F1 PAH-tolerant embryos. Specifically, we observed a bivalent domain in the CYP1A promoter enhancer comprising both activating and repressive histone post-translational modifications. Activating modifications, relative to repressive ones, showed greater increases in response to PAH in sensitive embryos, relative to tolerant, consistent with greater gene activation. Also, PAH-tolerant adult fish showed persistent induction of CYP1A long after exposure cessation, which is consistent with defective CYP1A shutoff and recovery to baseline. Since CYP1A expression is inversely correlated with cancer risk, these results indicate that PAH-tolerant fish have epigenetic protection against PAH-induced cancer in early life that degrades in response to continuous gene activation.
Collapse
Affiliation(s)
- Samantha Carrothers
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University
- Current address: Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | | | - Nicole Pelletier
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| | - Emma Weeks
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University
| | | | - Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| |
Collapse
|
7
|
Krug JD, Riedel TP, Lewandowski M, Lonneman WA, Turlington JM, Zavala J, Warren SH, Kleindienst TE, DeMarini DM. Mutagenic Atmospheres Generated from the Photooxidation of NO x with Selected VOCs and a Complex Mixture: Apportionment of Aromatic Mutagenicity for Reacted Gasoline Vapor. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2024; 334:120668. [PMID: 39380947 PMCID: PMC11457086 DOI: 10.1016/j.atmosenv.2024.120668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The interaction of sunlight with volatile organic compounds (VOCs) emitted from various sources results in mutagenic photooxidation products that contribute substantially to air pollution. Evaporation of gasoline is one such source of VOCs; however, no studies have evaluated the mutagenicity of the photooxidation products of gasoline vapors or of many of the non-aromatic constituent VOCs of gasoline. Here we determined the mutagenicity in Salmonella TA100 of atmospheres generated in a steady-state atmospheric simulation chamber by irradiating gasoline and individual non-aromatic VOCs in the presence of nitrogen oxides (NOX) in air. In addition to gasoline, we evaluated α-pinene; 2-pentene; ethanol; isobutanol; isoprene; and 2,2,4-trimethylpentane (isooctane). Cells were exposed at the air-agar interface to the atmospheres for 1, 2, 4, 8, or 16 h. Atmospheres generated in the dark were not mutagenic. However, under irradiation all atmospheres other than that of 2,2,4-trimethylpentane were mutagenic, with mutagenic potencies spanning 8.6-fold. The mutagenicity was due exclusively to direct-acting, late-generation photooxidation products. The non-aromatic VOCs studied here contributed little to the mutagenic potency of the photooxidation products of gasoline. However, the sum of the mutagenic potencies of these atmospheres plus those from the photooxidation of some aromatic VOCs in gasoline measured here and elsewhere (Riedel et al., Atmos Environ, 178:164, 2018) accounted for 71% of the mutagenic potency of the photooxidation products of gasoline vapor. In photochemical mixtures with strong biogenic contributions, isoprene products may also contribute significantly to mutagenic potency. Strategies to reduce the emissions of gasoline and those VOCs whose photooxidation products are most mutagenic would reduce VOC-associated air pollution and improve public health.
Collapse
Affiliation(s)
- Jonathan D. Krug
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Theran P. Riedel
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Michael Lewandowski
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - William A. Lonneman
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - John M. Turlington
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jose Zavala
- Oak Ridge Institute for Science and Education, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States Research Triangle Park, NC 27711, USA
| | - Sarah H. Warren
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Tadeusz E. Kleindienst
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - David M. DeMarini
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
8
|
Wong JY, Fischer AH, Baris D, Beane-Freeman LE, Karagas MR, Schwenn M, Johnson A, Matthews PP, Swank AE, Hosain GM, Koutros S, Silverman DT, DeMarini DM, Rothman N. Urinary mutagenicity and bladder cancer risk in northern New England. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:47-54. [PMID: 38465801 PMCID: PMC11089907 DOI: 10.1002/em.22588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
The etiology of bladder cancer among never smokers without occupational or environmental exposure to established urothelial carcinogens remains unclear. Urinary mutagenicity is an integrative measure that reflects recent exposure to genotoxic agents. Here, we investigated its potential association with bladder cancer in rural northern New England. We analyzed 156 bladder cancer cases and 247 cancer-free controls from a large population-based case-control study conducted in Maine, New Hampshire, and Vermont. Overnight urine samples were deconjugated enzymatically and the extracted organics were assessed for mutagenicity using the plate-incorporation Ames assay with the Salmonella frameshift strain YG1041 + S9. Logistic regression was used to estimate the odds ratios (OR) and 95% confidence intervals (CI) of bladder cancer in relation to having mutagenic versus nonmutagenic urine, adjusted for age, sex, and state, and stratified by smoking status (never, former, and current). We found evidence for an association between having mutagenic urine and increased bladder cancer risk among never smokers (OR = 3.8, 95% CI: 1.3-11.2) but not among former or current smokers. Risk could not be estimated among current smokers because nearly all cases and controls had mutagenic urine. Urinary mutagenicity among never-smoking controls could not be explained by recent exposure to established occupational and environmental mutagenic bladder carcinogens evaluated in our study. Our findings suggest that among never smokers, urinary mutagenicity potentially reflects genotoxic exposure profiles relevant to bladder carcinogenesis. Future studies are needed to replicate our findings and identify compounds and their sources that influence bladder cancer risk.
Collapse
Affiliation(s)
- Jason Y.Y. Wong
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, United States
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, United States [Formerly affiliated: JYYW, AHF, DB]
| | - Alexander H. Fischer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, United States [Formerly affiliated: JYYW, AHF, DB]
| | - Dalsu Baris
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, United States [Formerly affiliated: JYYW, AHF, DB]
| | - Laura E. Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, United States [Formerly affiliated: JYYW, AHF, DB]
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr., Lebanon, NH, 03756, United States
| | - Molly Schwenn
- Maine Cancer Registry, 220 Capitol St., Augusta, ME, 04433, United States [Formerly affiliated: MS]
| | - Alison Johnson
- Vermont Cancer Registry, 108 Cherry St., Burlington, VT, 05402, United States
| | - Peggy P. Matthews
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Adam E. Swank
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - G. Monawar Hosain
- Formerly, New Hampshire Department of Health and Human Services, Concord, New Hampshire (GMH) Currently, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, United States [Formerly affiliated: JYYW, AHF, DB]
| | - Debra T. Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, United States [Formerly affiliated: JYYW, AHF, DB]
| | - David M. DeMarini
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, United States [Formerly affiliated: JYYW, AHF, DB]
| |
Collapse
|
9
|
Caredda C, Franchitti E, Gilli G, Pignata C, Traversi D. Direct Impact of the Air on Mutant Cells for Mutagenicity Assessments in Urban Environments. Microorganisms 2023; 12:3. [PMID: 38276172 PMCID: PMC10820087 DOI: 10.3390/microorganisms12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Urban air pollution is recognized as a critical problem for public health and is classified as a carcinogen for humans. A great number of studies have focused on the monitoring of urban air mutagenicity. One of the best-known and applied methods for assessing mutagenicity is the Ames test, a bacterial reverse mutation test. The classic protocol for assessing air mutagenicity involves the concentration of particulate matter (PM) on filters and subsequent extraction using organic solvents. This work aimed to develop a method for the evaluation of air mutagenicity directly impacted by air on microbial plates already containing an Ames' microbial sensor. METHODS A specific six-month sampling campaign was carried out in Turin in a period with high air pollution. Samples were tested for mutagenicity on Salmonella typhimurium strains TA98, TA100, and YG1024 with the traditional method and with the new direct method. RESULTS The new protocol is able to evaluate the mutagenicity of the sampled air and obtain repeatable results. The final sensitivity is similar to the traditional method (≈10 net revertants/m3); however, the mutagenic response is due to the complete air pollution mixture, including volatile and semivolatile pollutants avoiding the concentration of filters and the following laborious extraction procedures. CONCLUSIONS Despite some critical issues in contamination control, the method is easier, faster, and less expensive than traditional methods.
Collapse
Affiliation(s)
| | | | | | | | - Deborah Traversi
- Department of Public Health and Pediatrics, University of Torino, piazza Polonia 94, 10126 Torino, Italy; (C.C.); (E.F.); (C.P.)
| |
Collapse
|
10
|
Holme JA, Vondráček J, Machala M, Lagadic-Gossmann D, Vogel CFA, Le Ferrec E, Sparfel L, Øvrevik J. Lung cancer associated with combustion particles and fine particulate matter (PM 2.5) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochem Pharmacol 2023; 216:115801. [PMID: 37696458 PMCID: PMC10543654 DOI: 10.1016/j.bcp.2023.115801] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
11
|
Vitorino JD, Costa PM. After a Century of Research into Environmental Mutagens and Carcinogens, Where Do We Stand? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1040. [PMID: 36673796 PMCID: PMC9859577 DOI: 10.3390/ijerph20021040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Cancer is one of the longest-known human diseases, yet only in recent times have we begun to perceive that the percentage of neoplasms caused by environmental factors, lifestyle and chemicals, is likely underestimated. The first medical reports associating cancer with pollutants like tars appeared by the early 20th century, but despite initial evidence relating oncogenesis and chromosomal alterations, only after the structure of DNA had been elucidated in the 1950s have genetic disorders been fully perceived as cause. This led to a growing interest in genotoxic and mutagenic pollutants. Even though we are now familiar with a range of environmental carcinogens spanning between aromatic hydrocarbons and asbestos to radionuclides and forms of carbon nanomaterials, establishing causal networks between pollutants and cancer remains cumbersome. In most part, this is due to the complexity of toxicant matrices, unknown modes-of-action of chemicals or their mixtures, the widening array of novel pollutants plus difficulties in subtracting background effects from true aetiology of disease. Recent advances in analytical chemistry, high-throughput toxicology, next-generation sequencing, computational biology and databases that allocate whole normal and cancer genomes, all indicate that we are on the verge of a new age of research into mechanistic 'oncotoxicology', but how can it impact risk assessment and prevention?
Collapse
Affiliation(s)
| | - Pedro M. Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
12
|
DeMarini DM, Warren SH, Brooks LR. Mutagenicity of the organic fraction of World Trade Center dust. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:16-25. [PMID: 36433931 PMCID: PMC9989947 DOI: 10.1002/em.22519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 05/07/2023]
Abstract
Most studies of the health effects and chemical characterization of the dust resulting from the catastrophic collapse of the World Trade Center (WTC) on September 11, 2001, have focused on the large inorganic fraction of the dust; however, chemical analyses have identified mutagens and carcinogens in the smaller organic fraction. Here, we determined the mutagenicity of the organic fraction of WTC dust in Salmonella. Only 0.74% of the mass of the particulate matter (PM) <53 μm in diameter was extractable organic matter (EOM). Because the EOM was 10 times more mutagenic in TA100 +S9 than in TA98 +S9 and was negative in TA98 -S9, we inferred, respectively, that polycyclic aromatic hydrocarbons (PAHs) played a role in the mutagenicity and not nitroarenes. In TA98 +S9, the mutagenic potency of the EOM (0.1 revertant/μg EOM) was within the range of EOMs from air and combustion emissions. However, the EOM-based mutagenic potency of the particles (0.0007 revertants/μg PM) was 1-2 orders of magnitude lower than values from a review of 50 combustion emissions and various air samples. We calculated that 37 PAHs analyzed previously in WTC EOM were 5.4% of the EOM mass and 0.04% of the PM mass; some air contained 0.3 μg WTC EOM/m3 (0.02 μg PAHs/m3 ). Populations exposed to WTC dust have elevated levels of prostate and thyroid cancer but not lung cancer. Our data support earlier estimates that PAH-associated cancer risk among this population, for example, PAH-associated lung cancer, was unlikely to be significantly elevated relative to background PAH exposures.
Collapse
Affiliation(s)
- David M. DeMarini
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and ExposureOffice of Research and Development, U.S. Environmental Protection AgencyResearch Triangle ParkNorth CarolinaUSA
| | - Sarah H. Warren
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and ExposureOffice of Research and Development, U.S. Environmental Protection AgencyResearch Triangle ParkNorth CarolinaUSA
| | - Lance R. Brooks
- Homeland Security and Materials Management Division, Center for Environmental Solutions and Emergency ResponseOffice of Research and Development, U.S. Environmental Protection AgencyResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
13
|
Ma X, Wu S. Oxygenated polycyclic aromatic hydrocarbons in food: toxicity, occurrence and potential sources. Crit Rev Food Sci Nutr 2022; 64:4882-4903. [PMID: 36384378 DOI: 10.1080/10408398.2022.2146652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are polycyclic aromatic hydrocarbons (PAHs) functionalized with at least one carbonyl group and are generally thought to be more toxic than PAHs. In this review, the physical-chemical properties, toxicity, occurrence, and potential sources of OPAHs in food were comprehensively discussed. The toxicities of 1,2-naphthoquinone, 1,4-naphthoquinone, 6H-benzo[cd]pyren-6-one, benzo[a]anthracene-7,12-quinone and 9,10-phenanthrenequinone were prominent among the OPAHs. Both 1,4-naphthoquinone and 1,2-naphthoquinone exhibited strong genotoxicity, cytotoxicity, and developmental toxicity. 6H-benzo[cd]pyren-6-one and benzo[a]anthracene-7,12-quinone showed high genotoxicity and cardiovascular toxicity. Although 9,10-phenanthrenequinone showed no genotoxicity, it exhibited almost the strongest cytotoxicity. For the majority of foods, the concentrations of OPAHs and PAHs were on the same order of magnitude. OPAHs tend to be positively correlated with the corresponding PAH concentrations in oil and fried food, while for barbequed food and seafood, no obvious correlation was found. In addition, 9-fluorenone, 9,10-anthraquinone, benzanthrone and 1,2-acenaphthenequinone had high abundance in food. Environmental pollution, food composition, storage conditions, heating methods, and other treatments influence the accumulation of OPAHs in food. Furthermore, oxygen and water played an important role in the transformation from PAHs to OPAHs. In short, this review guides the evaluation and further reduction of OPAH-related health risks in food.
Collapse
Affiliation(s)
- Xin Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|