1
|
Hernandez-Morfa M, Reinoso-Vizcaino NM, Zappia VE, Olivero NB, Cortes PR, Stempin CC, Perez DR, Echenique J. Intracellular Streptococcus pneumoniae develops enhanced fluoroquinolone persistence during influenza A coinfection. Front Microbiol 2024; 15:1423995. [PMID: 39035445 PMCID: PMC11258013 DOI: 10.3389/fmicb.2024.1423995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Streptococcus pneumoniae is a major pathogen responsible for severe complications in patients with prior influenza A virus (IAV) infection. We have previously demonstrated that S. pneumoniae exhibits increased intracellular survival within IAV-infected cells. Fluoroquinolones (FQs) are widely used to treat pneumococcal infections. However, our prior work has shown that S. pneumoniae can develop intracellular FQ persistence, a phenomenon triggered by oxidative stress within host cells. This persistence allows the bacteria to withstand high FQ concentrations. In this study, we show that IAV infection enhances pneumococcal FQ persistence during intracellular survival within pneumocytes, macrophages, and neutrophils. This enhancement is partly due to increased oxidative stress induced by the viral infection. We find that this phenotype is particularly pronounced in autophagy-proficient host cells, potentially resulting from IAV-induced blockage of autophagosome-lysosome fusion. Moreover, we identified several S. pneumoniae genes involved in oxidative stress response that contribute to FQ persistence, including sodA (superoxide dismutase), clpL (chaperone), nrdH (glutaredoxin), and psaB (Mn+2 transporter component). Our findings reveal a novel mechanism of antibiotic persistence promoted by viral infection within host cells. This underscores the importance of considering this phenomenon when using FQs to treat pneumococcal infections, especially in patients with concurrent influenza A infection.
Collapse
Affiliation(s)
- Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas M. Reinoso-Vizcaino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cinthia C. Stempin
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jose Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Loi VV, Busche T, Schnaufer F, Kalinowski J, Antelmann H. The neutrophil oxidant hypothiocyanous acid causes a thiol-specific stress response and an oxidative shift of the bacillithiol redox potential in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0325223. [PMID: 37930020 PMCID: PMC10715087 DOI: 10.1128/spectrum.03252-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus colonizes the skin and the airways but can also lead to life-threatening systemic and chronic infections. During colonization and phagocytosis by immune cells, S. aureus encounters the thiol-reactive oxidant HOSCN. The understanding of the adaptation mechanisms of S. aureus toward HOSCN stress is important to identify novel drug targets to combat multi-resistant S. aureus isolates. As a defense mechanism, S. aureus uses the flavin disulfide reductase MerA, which functions as HOSCN reductase and protects against HOSCN stress. Moreover, MerA homologs have conserved functions in HOSCN detoxification in other bacteria, including intestinal and respiratory pathogens. In this work, we studied the comprehensive thiol-reactive mode of action of HOSCN and its effect on the reversible shift of the E BSH to discover new defense mechanisms against the neutrophil oxidant. These findings provide new leads for future drug design to fight the pathogen at the sites of colonization and infections.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Franziska Schnaufer
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Hernandez-Morfa M, Olivero NB, Zappia VE, Piñas GE, Reinoso-Vizcaino NM, Cian MB, Nuñez-Fernandez M, Cortes PR, Echenique J. The oxidative stress response of Streptococcus pneumoniae: its contribution to both extracellular and intracellular survival. Front Microbiol 2023; 14:1269843. [PMID: 37789846 PMCID: PMC10543277 DOI: 10.3389/fmicb.2023.1269843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Streptococcus pneumoniae is a gram-positive, aerotolerant bacterium that naturally colonizes the human nasopharynx, but also causes invasive infections and is a major cause of morbidity and mortality worldwide. This pathogen produces high levels of H2O2 to eliminate other microorganisms that belong to the microbiota of the respiratory tract. However, it also induces an oxidative stress response to survive under this stressful condition. Furthermore, this self-defense mechanism is advantageous in tolerating oxidative stress imposed by the host's immune response. This review provides a comprehensive overview of the strategies employed by the pneumococcus to survive oxidative stress. These strategies encompass the utilization of H2O2 scavengers and thioredoxins, the adaptive response to antimicrobial host oxidants, the regulation of manganese and iron homeostasis, and the intricate regulatory networks that control the stress response. Here, we have also summarized less explored aspects such as the involvement of reparation systems and polyamine metabolism. A particular emphasis is put on the role of the oxidative stress response during the transient intracellular life of Streptococcus pneumoniae, including coinfection with influenza A and the induction of antibiotic persistence in host cells.
Collapse
Affiliation(s)
- Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - German E. Piñas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas M. Reinoso-Vizcaino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melina B. Cian
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Nuñez-Fernandez
- Centro de Química Aplicada, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jose Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
4
|
Fritsch VN, Linzner N, Busche T, Said N, Weise C, Kalinowski J, Wahl MC, Antelmann H. The MerR-family regulator NmlR is involved in the defense against oxidative stress in Streptococcus pneumoniae. Mol Microbiol 2023; 119:191-207. [PMID: 36349475 DOI: 10.1111/mmi.14999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Streptococcus pneumoniae has to cope with the strong oxidant hypochlorous acid (HOCl), during host-pathogen interactions. Thus, we analyzed the global gene expression profile of S. pneumoniae D39 towards HOCl stress. In the RNA-seq transcriptome, the NmlR, SifR, CtsR, HrcA, SczA and CopY regulons and the etrx1-ccdA1-msrAB2 operon were most strongly induced under HOCl stress, which participate in the oxidative, electrophile and metal stress response in S. pneumoniae. The MerR-family regulator NmlR harbors a conserved Cys52 and controls the alcohol dehydrogenase-encoding adhC gene under carbonyl and NO stress. We demonstrated that NmlR senses also HOCl stress to activate transcription of the nmlR-adhC operon. HOCl-induced transcription of adhC required Cys52 of NmlR in vivo. Using mass spectrometry, NmlR was shown to be oxidized to intersubunit disulfides or S-glutathionylated under oxidative stress in vitro. A broccoli-FLAP-based assay further showed that both NmlR disulfides significantly increased transcription initiation at the nmlR promoter by RNAP in vitro, which depends on Cys52. Phenotype analyses revealed that NmlR functions in the defense against oxidative stress and promotes survival of S. pneumoniae during macrophage infections. In conclusion, NmlR was characterized as HOCl-sensing transcriptional regulator, which activates transcription of adhC under oxidative stress by thiol switches in S. pneumoniae.
Collapse
Affiliation(s)
| | - Nico Linzner
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany.,NGS Core Facility, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Nelly Said
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.,Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Hirschmann S, Gómez-Mejia A, Kohler TP, Voß F, Rohde M, Brendel M, Hammerschmidt S. The Two-Component System 09 of Streptococcus pneumoniae Is Important for Metabolic Fitness and Resistance during Dissemination in the Host. Microorganisms 2021; 9:microorganisms9071365. [PMID: 34201716 PMCID: PMC8306541 DOI: 10.3390/microorganisms9071365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
The two-component regulatory system 09 of Streptococcus pneumoniae has been shown to modulate resistance against oxidative stress as well as capsule expression. These data and the implication of TCS09 in cell wall integrity have been shown for serotype 2 strain D39. Other data have suggested strain-specific regulatory effects of TCS09. Contradictory data are known on the impact of TCS09 on virulence, but all have been explored using only the rr09-mutant. In this study, we have therefore deleted one or both components of the TCS09 (SP_0661 and SP_0662) in serotype 4 S. pneumoniae TIGR4. In vitro growth assays in chemically defined medium (CDM) using sucrose or lactose as a carbon source indicated a delayed growth of nonencapsulated tcs09-mutants, while encapsulated wild-type TIGR4 and tcs09-mutants have reduced growth in CDM with glucose. Using a set of antigen-specific antibodies, immunoblot analysis showed that only the pilus 1 backbone protein RrgB is significantly reduced in TIGR4ΔcpsΔhk09. Electron microscopy, adherence and phagocytosis assays showed no impact of TCS09 on the TIGR4 cell morphology and interaction with host cells. In contrast, in vivo infections and in particular competitive co-infection experiments demonstrated that TCS09 enhances robustness during dissemination in the host by maintaining bacterial fitness.
Collapse
Affiliation(s)
- Stephanie Hirschmann
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Alejandro Gómez-Mejia
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Thomas P. Kohler
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Franziska Voß
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Max Brendel
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Sven Hammerschmidt
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
- Correspondence:
| |
Collapse
|
6
|
The pneumococcal two-component system SirRH is linked to enhanced intracellular survival of Streptococcus pneumoniae in influenza-infected pulmonary cells. PLoS Pathog 2020; 16:e1008761. [PMID: 32790758 PMCID: PMC7447016 DOI: 10.1371/journal.ppat.1008761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 08/25/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
The virus-bacterial synergism implicated in secondary bacterial infections caused by Streptococcus pneumoniae following infection with epidemic or pandemic influenza A virus (IAV) is well documented. However, the molecular mechanisms behind such synergism remain largely ill-defined. In pneumocytes infected with influenza A virus, subsequent infection with S. pneumoniae leads to enhanced pneumococcal intracellular survival. The pneumococcal two-component system SirRH appears essential for such enhanced survival. Through comparative transcriptomic analysis between the ΔsirR and wt strains, a list of 179 differentially expressed genes was defined. Among those, the clpL protein chaperone gene and the psaB Mn+2 transporter gene, which are involved in the stress response, are important in enhancing S. pneumoniae survival in influenza-infected cells. The ΔsirR, ΔclpL and ΔpsaB deletion mutants display increased susceptibility to acidic and oxidative stress and no enhancement of intracellular survival in IAV-infected pneumocyte cells. These results suggest that the SirRH two-component system senses IAV-induced stress conditions and controls adaptive responses that allow survival of S. pneumoniae in IAV-infected pneumocytes.
Collapse
|
7
|
Survival of Streptococcus suis in Porcine Blood Is Limited by the Antibody- and Complement-Dependent Oxidative Burst Response of Granulocytes. Infect Immun 2020; 88:IAI.00598-19. [PMID: 31843967 DOI: 10.1128/iai.00598-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
Bacteremia is a hallmark of invasive Streptococcus suis infections of pigs, often leading to septicemia, meningitis, or arthritis. An important defense mechanism of neutrophils is the generation of reactive oxygen species (ROS). In this study, we report high levels of ROS production by blood granulocytes after intravenous infection of a pig with high levels of S. suis-specific antibodies and comparatively low levels of bacteremia. This prompted us to investigate the working hypothesis that the immunoglobulin-mediated oxidative burst contributes to the killing of S. suis in porcine blood. Several S. suis strains representing serotypes 2, 7, and 9 proved to be highly susceptible to the oxidative burst intermediate hydrogen peroxide, already at concentrations of 0.001%. The induction of ROS in granulocytes in ex vivo-infected reconstituted blood showed an association with pathogen-specific antibody levels. Importantly, inhibition of ROS production by the NADPH oxidase inhibitor apocynin led to significantly increased bacterial survival in the presence of high specific antibody levels. The oxidative burst rate of granulocytes partially depended on complement activation, as shown by specific inhibition. Furthermore, treatment of IgG-depleted serum with a specific IgM protease or heat to inactivate complement resulted in >3-fold decreased oxidative burst activity and increased bacterial survival in reconstituted porcine blood in accordance with an IgM-complement-oxidative burst axis. In conclusion, this study highlights an important control mechanism of S. suis bacteremia in the natural host: the induction of ROS in blood granulocytes via specific immunoglobulins such as IgM.
Collapse
|
8
|
Memariani H, Memariani M, Ghasemian A. An overview on anti-biofilm properties of quercetin against bacterial pathogens. World J Microbiol Biotechnol 2019; 35:143. [PMID: 31493142 DOI: 10.1007/s11274-019-2719-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/24/2019] [Indexed: 01/22/2023]
Abstract
Bacterial biofilms are multicellular aggregates enclosed in a self-created biopolymer matrix. Biofilm-producing bacteria have become a great public health problem worldwide because biofilms enable these microorganisms to evade several clearance mechanisms produced by host and synthetic sources. Over the past years, different flavonoids including quercetin have engrossed considerable interest among researchers owing to their potential anti-biofilm properties. To our knowledge, there is no review regarding effects of quercetin towards bacterial biofilms, prompting us to summarize experimental evidence on its anti-biofilm properties. Quercetin inhibits biofilm development by a diverse array of bacterial pathogens such as Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Pseudomonas aeruginosa. Prevention of bacterial adhesion, suppression of quorum-sensing pathways, disruption or alteration of plasma membrane, inhibition of efflux pumps, and blocking nucleic acid synthesis have been documented as major anti-biofilm mechanisms of quercetin. Overall, anti-biofilm activity of quercetin can open up new horizons in a wide range of biomedical areas, from food industry to medicine.
Collapse
Affiliation(s)
- Hamed Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
9
|
Wang Y, Li J, Wang Y, Gu W, Zhu F. Effectiveness and practical uses of 23-valent pneumococcal polysaccharide vaccine in healthy and special populations. Hum Vaccin Immunother 2017; 14:1003-1012. [PMID: 29261406 PMCID: PMC5893217 DOI: 10.1080/21645515.2017.1409316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Streptococcus pneumonia (S. pneumoniae) is responsible for significant morbidity and mortality throughout the world. The 23-valent pneumococcal polysaccharide vaccines (PPV23) have been widely used for many years, but challenges are remaining in some respects, especially for its effectiveness among high-risk populations and older adults. This review aims to summarize recent clinical trials and studies of PPV23 vaccination among healthy people ≥ 2 years of age and those with high-risk conditions such as pregnant women, individuals with immunocompromising diseases and other chronic conditions, and provide health officials in China and other developing countries a comprehensive understanding of the current vaccination strategies for PPV23 and for the combined use of PPV23 and pneumococcal conjugate vaccines (PCVs) in adults.
Collapse
Affiliation(s)
- Yang Wang
- a School of Public Health, Southeast University , Nanjing , PR China
| | - Jingxin Li
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| | - Yuxiao Wang
- a School of Public Health, Southeast University , Nanjing , PR China
| | - Wei Gu
- c School of Public Health, Nanjing Medical University , Nanjing , PR China
| | - Fengcai Zhu
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| |
Collapse
|
10
|
Bittaye M, Cash P, Forbes K. Proteomic variation and diversity in clinical Streptococcus pneumoniae isolates from invasive and non-invasive sites. PLoS One 2017; 12:e0179075. [PMID: 28575057 PMCID: PMC5456405 DOI: 10.1371/journal.pone.0179075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/23/2017] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pneumoniae is responsible for a variety of invasive and non-invasive human infections. There are over 90 serotypes of S. pneumoniae differing in their ability to adapt to the different niches within the host. Two-dimensional gel electrophoresis was used to discriminate clinical S. pneumoniae isolates recovered from either blood cultures (invasive site isolates) or other sites, including sputum, tracheal aspirate, ear, eye and skin swabs (non-invasive site isolates). Global protein expression profiles for five invasive site and six non-invasive site isolates representing five different serotypes (serotypes 4, 6, 9, 14 and 23) were obtained for each isolate and combined into a single data set using Progenesis SameSpots™ software. One-hundred and eighty six protein spots (39% of the protein spots in the dataset) differed significantly (ANOVA, p<0.05) in abundance between the invasive site (101 upregulated protein spots) and non-invasive site (85 upregulated protein spots) isolates. Correlations between the bacterial proteomes and their sites of isolation were determined by Principal Component Analysis (PCA) using the significantly different protein spots. Out of the 186 variable protein spots, 105 exhibited a serotype-associated pattern of variability. The expression of the remaining 81 protein spots was concluded to be uniquely linked to the site of bacterial isolation. Mass spectrometry was used to identify selected protein spots that showed either constant or differential abundance levels. The identified proteins had a diverse range of functions including, capsule biogenesis, DNA repair, protein deglycation, translation, stress response and virulence as well as amino acid, carbohydrate, lipid and nucleotide metabolism. These findings provide insight on the proteins that contribute towards the adaptation of the bacteria to different sites within the host.
Collapse
Affiliation(s)
- Mustapha Bittaye
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: ,
| | - Phil Cash
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Ken Forbes
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
11
|
Devraj G, Beerlage C, Brüne B, Kempf VAJ. Hypoxia and HIF-1 activation in bacterial infections. Microbes Infect 2016; 19:144-156. [PMID: 27903434 DOI: 10.1016/j.micinf.2016.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
For most of the living beings, oxygen is one of the essential elements required to sustain life. Deprivation of oxygen causes tissue hypoxia and this severely affects host cell and organ functions. Tissue hypoxia is a prominent microenvironmental condition occurring in infections and there is a body of evidence that hypoxia and inflammation are interconnected with each other. The primary key factor mediating the mammalian hypoxic response is hypoxia inducible factor (HIF)-1, which regulates oxygen homeostasis on cellular, tissue and organism level. Recent studies show that HIF-1 plays a central role in angiogenesis, cancer and cardiovascular disease but also in bacterial infections. Activation of HIF-1 depends on the nature of the pathogen and the characteristics of infections in certain hosts. Up to date, it is not completely clear whether the phenomenon of HIF-1 activation in infections has a protective or detrimental effect on the host. In this review, we give an overview of whether and how hypoxia and HIF-1 affect the course of infections.
Collapse
Affiliation(s)
- Gayatri Devraj
- Institute of Medical Microbiology and Infection Control, Goethe-University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Christiane Beerlage
- Institute of Medical Microbiology and Infection Control, Goethe-University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I - Pathobiochemistry, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institute of Medical Microbiology and Infection Control, Goethe-University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Davey L, Halperin SA, Lee SF. Thiol-Disulfide Exchange in Gram-Positive Firmicutes. Trends Microbiol 2016; 24:902-915. [PMID: 27426970 DOI: 10.1016/j.tim.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/08/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022]
Abstract
Extracytoplasmic thiol-disulfide oxidoreductases (TDORs) catalyze the oxidation, reduction, and isomerization of protein disulfide bonds. Although these processes have been characterized in Gram-negative bacteria, the majority of Gram-positive TDORs have only recently been discovered. Results from recent studies have revealed distinct trends in the types of TDOR used by different groups of Gram-positive bacteria, and in their biological functions. Actinobacteria TDORs can be essential for viability, while Firmicute TDORs influence various physiological processes, including protein stability, oxidative stress resistance, bacteriocin production, and virulence. In this review we discuss the diverse extracytoplasmic TDORs used by Gram-positive bacteria, with a focus on Gram-positive Firmicutes.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, B3H 4R2 Canada.
| |
Collapse
|