1
|
Tuchiu BM, Stefan-van Staden RI, van Staden JKF. Stochastic platform based on calix[6]arene and TiO 2-modified reduced graphene oxide electrode for on-site determination of nonivamide in pharmaceutical and water samples. RSC Adv 2023; 13:17628-17632. [PMID: 37312991 PMCID: PMC10258681 DOI: 10.1039/d3ra02363j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
Using a detection platform based on an integrated sensor constructed by modifying TiO2 and reduced graphene oxide paste with calix[6]arene, a novel stochastic approach for both quantitative and qualitative analysis of nonivamide in pharmaceuticals and water samples has been developed. A wide analytical range of 1.00 × 10-18 to 1.00 × 10-1 mol L-1 was obtained with the stochastic detection platform for nonivamide determination. A very low limit of quantification of 1.00 × 10-18 mol L-1 was reached for this analyte. The platform was successfully tested on real samples, respectively, on topical pharmaceutical dosage form and surface water samples. The samples were analyzed without pretreatment in the case of pharmaceutical ointment or under minimal preliminary processing for surface waters proving a facile, rapid, and reliable method. Moreover, being portable, the developed detection platform is adequate for on-site analysis in various sample matrices.
Collapse
Affiliation(s)
- Bianca-Maria Tuchiu
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter 202 Splaiul Independentei Str. 060021 Bucharest-6 Romania +40751507779
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest Bucharest Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter 202 Splaiul Independentei Str. 060021 Bucharest-6 Romania +40751507779
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest Bucharest Romania
| | - Jacobus Koos Frederick van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter 202 Splaiul Independentei Str. 060021 Bucharest-6 Romania +40751507779
| |
Collapse
|
2
|
Chen Y, Luo G, Chen S, Zhang D, Xie W, Wang Z, Zheng W, Xu H. The potential of prodigiosin for control of Prorocentrum donghaiense blooms: Algicidal properties and acute toxicity to other marine organisms at various trophic levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112913. [PMID: 34895730 DOI: 10.1016/j.ecoenv.2021.112913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 06/14/2023]
Abstract
Prorocentrum donghaiense, a marine dinoflagellate, causes harmful algal blooms (HABs) characterised by the highest outbreak frequency and most extensive coverage among similar species in the East China Sea. Highly efficient and ecofriendly biocontrol strategies should be developed for HAB control. Prodigiosin is an efficient biological algicide that demonstrated strong algicidal activity towards P. donghaiense. However, the mechanism of its toxicity to P. donghaiense is unknown. These factors were investigated to evaluate potential use of prodigiosin for control of P. donghaiense blooms. Photosynthetic electron transport rate, maximum quantum yield and respiration rate of P. donghaiense decreased significantly upon exposure to prodigiosin, indicating that prodigiosin rapidly exerted adverse effects on the chloroplasts and mitochondria. Furthermore, a significant increase in dichlorofluorescein fluorescence intensity indicated an overproduction of reactive oxygen species (ROS). The antioxidant system of P. donghaiense scavenged ROS; however, an increase in malondialdehyde concentrations indicated that excessive ROS were still able to initiate lipid peroxidation. Thus, ROS production resulted in the formation of lipids with a reduced degree of unsaturation. Lipid peroxidation decreased lipid fluidity and rigidified the membrane system, causing serious functional destruction of the membrane. Flow cytometry analysis indicated that prodigiosin arrested the cell cycle of P. donghaiense. However, surviving algal cells were able to repair the damaged functions and resume the cell cycle after prodigiosin was removed by photodegradation. Otherwise, P. donghaiense cells lost their membrane integrity and died. To begin an evaluation of ecological safety of prodigiosin, we tested four marine organisms at various trophic levels. The results of these tests indicated that Chlorella vulgaris, Photobacterium phosphoreum, Artemia salina and Lateolabrax japonicus were less sensitive to prodigiosin than P. donghaiense. Toxicity to all five organisms declined after prodigiosin was exposed to sunlight for 6 h. Considering the toxic doses of prodigiosin to various organisms and its photodegradation characteristics, we suggest that prodigiosin has potential in controlling P. donghaiense blooms but should be applied at night, in small doses, with multiple applications.
Collapse
Affiliation(s)
- Yingjie Chen
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Guiying Luo
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Shuangshuang Chen
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Danyang Zhang
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Wanxin Xie
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Zengge Wang
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Wei Zheng
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Hong Xu
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, Fujian 361102, PR China.
| |
Collapse
|
3
|
Gao K, Li B, Xue C, Dong J, Qian P, Lu Q, Deng X. Oxidative stress responses caused by dimethyl phthalate (DMP) and diethyl phthalate (DEP) in a marine diatom Phaeodactylum tricornutum. MARINE POLLUTION BULLETIN 2021; 166:112222. [PMID: 33711610 DOI: 10.1016/j.marpolbul.2021.112222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
A marine diatom (Phaeodactylum tricornutum) was exposed to different concentrations of dimethyl phthalate (DMP) and diethyl phthalate (DEP) for 96 h within a batch-culture system to investigate their toxicities. Results showed that P. tricornutum could remove DMP and DEP effectively with removal rates of 0.20-0.30 and 0.14-0.21 mg L-1 h-1, respectively. In addition, DMP and DEP significantly inhibited the photosynthesis and chlorophyll a biosynthesis of P. tricornutum with 96-h EC50 values of 390.5 mg L-1 and 74.0 mg L-1, respectively. Results of reactive oxygen species (ROS) level suggested that the two PAEs could induce excessive ROS production in the diatom. Moreover, activities of antioxidant enzymes (i.e., SOD and POD) in the diatom increased with the increase of DMP and DEP concentrations. The results will help to understand the toxic mechanisms of PAEs, and provide strong evidences for evaluating their ecological risks in the marine environment.
Collapse
Affiliation(s)
- Kun Gao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Bin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Chunye Xue
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Jingwei Dong
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Pingkang Qian
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Qian Lu
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Xiangyuan Deng
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| |
Collapse
|
4
|
Míguez L, Esperanza M, Seoane M, Cid Á. Assessment of cytotoxicity biomarkers on the microalga Chlamydomonas reinhardtii exposed to emerging and priority pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111646. [PMID: 33396166 DOI: 10.1016/j.ecoenv.2020.111646] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Contamination of aquatic ecosystems linked to anthropogenic activity is currently a major concern; therefore, ecotoxicological studies are needed to assess its effect on organisms. The main objective of this study was to investigate the effects of different pollutants on microalgae in search of sensitive biomarkers that can promote a common cytotoxic response regardless of the contaminant. Cultures of the freshwater microalga Chlamydomonas reinhardtii were exposed for 24 h to four chemicals, three emerging pollutants (benzophenone-3, bisphenol A and oxytetracycline) and one priority substance (atrazine). A cytometric panel was carried out to assess toxicity biomarkers including cellular growth, inherent cell properties, viability, vitality, cytoplasmic membrane potential and ROS levels. Lipid peroxidation, photosynthetic efficiency and transcriptional responses of photosynthesis- and oxidative stress-related genes using RT-qPCR were also studied. Some toxicity responses showed a similar pattern; a decrease in growth rate, vitality and photosynthetic efficiency and an increase in autofluorescence and in the number of cells with depolarised cytoplasmic membrane and were found for all chemicals tested. However, ATZ and OTC provoked a decrease in cell size, whereas BP-3 and BPA caused an increase in cell size, intracellular complexity and ROS levels and a decrease in cell viability. Assayed pollutants generally promoted an overexpression of genes related to cellular antioxidant defence system and a subexpression of photosynthesis-related genes. In addition to the traditional growth endpoint, cell vitality, autofluorescence and gene expression of catalase, glutathione peroxidase and Fe-superoxide dismutase were significantly affected for all chemicals tested, showing a common cytotoxic response. Among the tested substances, BP-3 provoked the strongest cytotoxic alterations on this microalga, pointing out that some emerging contaminants could be more harmful to organisms than priority pollutants.
Collapse
Affiliation(s)
- Laura Míguez
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain.
| |
Collapse
|
5
|
Chen Y, Wen Y, Chen G, Zhang H, Wang Z. Fabrication of anti-algae coatings by using quaternary ammonium compounds for wastewater treatment facilities: Anti-algae performance and mechanisms. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Deng XY, Chen B, Li D, Hu XL, Cheng J, Gao K, Wang CH. Growth and physiological responses of a marine diatom (Phaeodactylum tricornutum) against two imidazolium-based ionic liquids ([C 4mim]BF 4 and [C 8mim]BF 4). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:115-122. [PMID: 28618302 DOI: 10.1016/j.aquatox.2017.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/18/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Ionic liquids (ILs) have been considered as "green" substitutes for traditional organic solvents in many existing biological and chemical areas. However, they have high solubility and poor biodegradability in water, suggesting that they could become persistent chemical pollutants in aquatic environment. The ability of two widely used imidazolium-based ILs to affect the growth and physiological characteristics of a marine diatom (Phaeodactylum tricornutum) was investigated in this study. The diatom was exposed to different concentrations of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim]BF4) and 1-octyl-3-methylimidazolium tetrafluoroborate ([C8mim]BF4) for 96h within a batch-culture system. Results showed that [C4mim]BF4 and [C8mim]BF4 were very stable in seawater during 96h of exposure, and the compounds significantly inhibited the growth of P. tricornutum with 24, 48, 72 and 96h EC50 values of 30.81, 28.53, 39.92, 45.88mgL-1 and 30.17, 23.36, 28.62, 31.37mgL-1, respectively. In addition, the photosynthetic activity and chlorophyll a synthesis of P. tricornutum were inhibited by [C4mim]BF4 and [C8mim]BF4, indicating that the structural integrity of chloroplasts of the diatom may be disrupted or damaged by the two ILs. Compared with that of the controls, reactive oxygen species (ROS) level was increased by 0.65, 1.17, 1.85, 3.13, 2.94 times and 0.55, 1.77, 2.42, 3.45, 3.47 times in 5, 10, 20, 40 and 60mgL-1 [C4mim]BF4 and [C8mim]BF4 treatments, respectively. The excessive ROS may cause lipid peroxidation, shortage of metabolic energy and decline of photosynthetic efficiency, which may be the main reason for toxicity of the two ILs to marine diatoms. To withstand the damaging effects of excessive ROS, remarkable physiological and biochemical responses occurred in treatments with the two ILs to protect the cells of P. tricornutum. Parameters such as soluble protein content, soluble sugar content, and superoxide dismutase (SOD) and peroxidase (POD) activities of the diatom increased significantly with increasing concentrations of the two ILs at 96h of exposure relative to the controls. These findings not only provide strong background for evaluating the ecological risks and toxicity of ILs in marine environment, but also help to unravel the toxic mechanism of the two ILs to marine diatoms.
Collapse
Affiliation(s)
- Xiang-Yuan Deng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Biao Chen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Da Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Xiao-Li Hu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Jie Cheng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Kun Gao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Chang-Hai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Ecotoxicity and Preliminary Risk Assessment of Nonivamide as a Promising Marine Antifoulant. J CHEM-NY 2016. [DOI: 10.1155/2016/2870279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The unclear environmental performance of nonivamide limits its application as a marine antifoulant. In this study, the natural degradation of nonivamide was studied in seawater and tap water. The half-life was 5.8 d, 8.8 d, 12.2 d, and 14.7 d in seawater and tap water in photolysis and biolysis, respectively. Furthermore, the ecotoxicity of nonivamide was assessed using marine microalgae,Chlorella vulgarisandPlatymonassp.;EC50, 6 dvalues on the growth ofChlorella vulgarisandPlatymonassp. were 16.9 mg L−1and 19.21 mg L−1, respectively. The toxicity and environmental risk of nonivamide on microalgae were significantly decreased due to the natural degradation in seawater.
Collapse
|