1
|
Oliveira AAD, Benvindo-Souza M, Santos HVRD, Barradas MC, Marques LP, Costa AG, Sarmento RA, de Melo E Silva D, Souza Saraiva AD. The impact of neonicotinoid insecticides on amphibians: A comprehensive review and future research challenges. ENVIRONMENTAL RESEARCH 2025; 267:120595. [PMID: 39667482 DOI: 10.1016/j.envres.2024.120595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Neonicotinoid insecticides (NNIs) are widely used in agriculture; however, their effects on anuran amphibians remain poorly explored. This global review critically examines the existing literature, with data obtained from Web of Science and Scopus databases. A total thirty-seven studies were published from 2004 to 2023. Most studies originate from countries with significant scientific investment, with a notable absence of research from Europe, likely due to European Union restrictions on NNIs. Despite these restrictions, NNIs continue to be produced and exported from Europe. Since 1990, four generations of NNIs have been developed, generally characterized by high water solubility and environmental persistence, which increases the risks of groundwater contamination. Imidacloprid (46%), Clothianidin (22%) and Thiamethoxam (20%) were the most studied NNIs. The research predominantly focused on species such as Lithobates sylvaticus, Xenopus laevis, Lithobates pipiens and Pelophylax nigromaculatus. A significant 71.43% of the studies involved tadpoles, due to their vulnerability during early development and importance for population survival. L. sylvaticus, L. pipiens and P. nigromaculatus were extensively studied due to their distribution and X. laevis due to its ease of laboratory handling. The most common experimental approaches included survival tests, which assessed mortality rates, and biochemical tests that revealed cellular damage and concerns regarding lipid peroxidation. Developmental studies indicated both physical and physiological impacts, while genotoxic tests demonstrated damage to genetic material. Notable variability in responses was observed between species and compounds. The biomarkers investigated employed diverse methodologies, suggesting the need for more effective techniques. In the concluding remarks and future perspectives, the study presents the main findings, identifies important gaps in current research, emphasizes key challenges, and outlines strategic directions for future investigations.
Collapse
Affiliation(s)
- Aline Arantes de Oliveira
- Laboratory of Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, City: Goiânia, Goiás, Brazil; Research Group on Conservation of Agroecosystems and Ecotoxicology (CAE), Federal Institute of Education, Science and Technology of the State of Goiás, Campus Rio Verde, City: Rio Verde, Goiás, Brazil.
| | - Marcelino Benvindo-Souza
- Laboratory of Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, City: Goiânia, Goiás, Brazil; Laboratory of Biogeography and Aquatic Ecology, Goiás State University, Fazenda Barreiro de Melo, City: Anápolis, Goiás, Brazil.
| | | | - Miller Caldas Barradas
- Laboratory of Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, City: Goiânia, Goiás, Brazil.
| | | | - Andreya Gonçalves Costa
- Laboratory of Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, City: Goiânia, Goiás, Brazil.
| | - Renato Almeida Sarmento
- Postgraduate Program in Plant Production, Applied and Functional Ecology Laboratory, Federal University of Tocantins, Gurupi University Campus, City: Gurupi, Tocantins, Brazil.
| | - Daniela de Melo E Silva
- Laboratory of Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, City: Goiânia, Goiás, Brazil.
| | - Althiéris de Souza Saraiva
- Research Group on Conservation of Agroecosystems and Ecotoxicology (CAE), Federal Institute of Education, Science and Technology of the State of Goiás, Campus Campos Belos, City: Campos Belos, Goiás, Brazil.
| |
Collapse
|
2
|
Fonseca Peña SVD, Natale GS, Brodeur JC. Toxicity of the neonicotinoid insecticides thiamethoxam and imidacloprid to tadpoles of three species of South American amphibians and effects of thiamethoxam on the metamorphosis of Rhinella arenarum. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:1019-1039. [PMID: 36424857 DOI: 10.1080/15287394.2022.2147113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The present study examined the acute and chronic toxicity of the neonicotinoid insecticides imidacloprid (IMI) and thiamethoxam (TIA) on the neotropical amphibian species Rhinella arenarum, Rhinella fernandezae and Scinax granulatus. The median lethal concentration after 96 hr exposure (96 hr-LC50) ranged between 11.28 and >71.2 mg/L amongst all species and development stages tested, indicating that these pesticides are not likely to produce acute toxicity in the wild. The subchronic toxicity was also low, with 21 day-LC50 values ranging between 27.15 and >71.2 mg/L. However, tadpoles of Rhinella arenarum exposed to thiamethoxam from stage 27 until completion of metamorphosis presented a significantly lower metamorphic success rate together with a smaller size at metamorphosis, starting from the lowest concentration tested. Although a number of studies previously examined the effects of neonicotinoids on amphibian tadpoles, these investigations focused on the time to metamorphosis and reported a variety of results including retardation, acceleration or lack of effect. Here, data demonstrated that thiamethoxam predominantly impacts metamorphosis through reduction of the transformation success and body weight, rather than by affecting the timings of metamorphosis. By closely monitoring progression of tadpoles through the different stages, impairment of metamorphosis was demonstrated to occur during the transition from stage 39 to 42, suggesting an effect on the thyroid system. An asymmetry in the length of the arms was also observed in metamorphs treated with thiamethoxam. Overall, these results indicate that thiamethoxam, and conceivably other neonicotinoids, have the potential to significantly impair metamorphosis of amphibians and diminish their performance and survival in the wild.
Collapse
Affiliation(s)
- Shirley Vivian Daniela Fonseca Peña
- Instituto de Recursos Biológicos Centro de Investigaciones de Recursos Naturales (CIRN) Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Guillermo Sebastián Natale
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Centro de Investigaciones del Medio Ambiente (CIM) Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Julie Céline Brodeur
- Instituto de Recursos Biológicos Centro de Investigaciones de Recursos Naturales (CIRN) Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
3
|
Danis BEG, Marlatt VL. Investigating Acute and Subchronic Effects of Neonicotinoids on Northwestern Salamander Larvae. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:691-707. [PMID: 33880625 DOI: 10.1007/s00244-021-00840-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
This research investigated the adverse effects of neonicotinoids on the Northwestern salamander (Ambystoma gracile; NWS) after acute and subchronic exposures during early aquatic life stages via whole organism (i.e., growth, development) and molecular (i.e., gene expression) level endpoints. In a 96-h exposure, NWS larvae were exposed to four imidacloprid concentrations (250, 750, 2250, 6750 µg/L) and a water control treatment, and no effects on survival, body weight, snout-vent length (SVL), and total body length were observed. However, a significant 1.70- and 2.33-fold decrease in thyroid receptor β (TRβ) mRNA expression levels were detected in the larvae exposed to 750 and 2250 µg/L imidacloprid, respectively, compared with the larvae in the water control. In subsequent subchronic experiments, NWS larvae were exposed for 35 days to imidacloprid alone and an equal part mixture of neonicotinoids (imidacloprid, clothianidin, and thiamethoxam (ICT)) at three concentrations (10, 100 and 1000 µg total neonicotinoids/L) and a water control. In these experiments, there were no effects on larval survival, body weight, SVL, and total body length. However, advanced development of larvae in the 100 µg/L imidacloprid treatment was observed compared with the control after 35-day imidacloprid exposure, providing some evidence of disruption of the thyroid endocrine axis at an environmentally relevant concentration. Ultimately, there is a paucity of studies conducted examining the sensitivity of salamanders to pollutants; thus, this study reports novel findings that will contribute to understanding the sensitivity of a Caudate amphibian model to a common environmental pollutant.
Collapse
Affiliation(s)
- Blake E G Danis
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
4
|
Robinson S, Richardson S, Dalton R, Maisonneuve F, Bartlett A, de Solla S, Trudeau V, Waltho N. Assessment of Sublethal Effects of Neonicotinoid Insecticides on the Life-History Traits of 2 Frog Species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1967-1977. [PMID: 31386781 PMCID: PMC7322800 DOI: 10.1002/etc.4511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 05/28/2019] [Indexed: 05/03/2023]
Abstract
Neonicotinoid insecticides are used extensively in agriculture and, as a consequence, are now detectable in nearby aquatic environments. Few studies have evaluated the effects of neonicotinoids on amphibians in these aquatic environments. In the present study, we examined the effects of 2 commercial formulations of neonicotinoids (active ingredients clothianidin and thiamethoxam) on survival and life-history traits of wood frogs (Lithobates sylvaticus) and northern leopard frogs (Lithobates pipiens). We used artificial pond mesocosms to assess the effects of these neonicotinoids, at nominal concentrations of 2.5 and 250 µg/L, on amphibian larval development through metamorphosis. We found no differences between controls and neonicotinoid exposure for any of the endpoints assessed for either wood frogs or leopard frogs. The present study suggests that concentrations meeting or exceeding observed levels of clothianidin and thiamethoxam in surface waters will not directly affect metamorphosis in 2 amphibians. Environ Toxicol Chem 2019;38:1967-1977. © 2019 SETAC.
Collapse
Affiliation(s)
- S.A. Robinson
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health DivisionOttawaOntarioCanada
| | | | - R.L. Dalton
- Department of BiologyCarleton UniversityOttawaOntarioCanada
- Environment and Climate Change Canada, Ecological Assessment DivisionGatineauQuebecCanada
| | - F. Maisonneuve
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health DivisionOttawaOntarioCanada
| | - A.J. Bartlett
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, BurlingtonOntarioCanada
| | - S.R. de Solla
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, BurlingtonOntarioCanada
| | - V.L. Trudeau
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - N. Waltho
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| |
Collapse
|
6
|
Thambirajah AA, Koide EM, Imbery JJ, Helbing CC. Contaminant and Environmental Influences on Thyroid Hormone Action in Amphibian Metamorphosis. Front Endocrinol (Lausanne) 2019; 10:276. [PMID: 31156547 PMCID: PMC6530347 DOI: 10.3389/fendo.2019.00276] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Aquatic and terrestrial environments are increasingly contaminated by anthropogenic sources that include pharmaceuticals, personal care products, and industrial and agricultural chemicals (i. e., pesticides). Many of these substances have the potential to disrupt endocrine function, yet their effect on thyroid hormone (TH) action has garnered relatively little attention. Anuran postembryonic metamorphosis is strictly dependent on TH and perturbation of this process can serve as a sensitive barometer for the detection and mechanistic elucidation of TH disrupting activities of chemical contaminants and their complex mixtures. The ecological threats posed by these contaminants are further exacerbated by changing environmental conditions such as temperature, photoperiod, pond drying, food restriction, and ultraviolet radiation. We review the current knowledge of several chemical and environmental factors that disrupt TH-dependent metamorphosis in amphibian tadpoles as assessed by morphological, thyroid histology, behavioral, and molecular endpoints. Although the molecular mechanisms for TH disruption have yet to be determined for many chemical and environmental factors, several affect TH synthesis, transport or metabolism with subsequent downstream effects. As molecular dysfunction typically precedes phenotypic or histological pathologies, sensitive assays that detect changes in transcript, protein, or metabolite abundance are indispensable for the timely detection of TH disruption. The emergence and application of 'omics techniques-genomics, transcriptomics, proteomics, metabolomics, and epigenomics-on metamorphosing tadpoles are powerful emerging assets for the rapid, proxy assessment of toxicant or environmental damage for all vertebrates including humans. Moreover, these highly informative 'omics techniques will complement morphological, behavioral, and histological assessments, thereby providing a comprehensive understanding of how TH-dependent signal disruption is propagated by environmental contaminants and factors.
Collapse
Affiliation(s)
| | | | | | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|