1
|
Yang X, Wang Z, Xu J, Zhang C, Gao P, Zhu L. Effects of dissolved organic matter on the environmental behavior and toxicity of metal nanomaterials: A review. CHEMOSPHERE 2024; 358:142208. [PMID: 38704042 DOI: 10.1016/j.chemosphere.2024.142208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Metal nanomaterials (MNMs) have been released into the environment during their usage in various products, and their environmental behaviors directly impact their toxicity. Numerous environmental factors potentially affect the behaviors and toxicity of MNMs with dissolved organic matter (DOM) playing the most essential role. Abundant facts showing contradictory results about the effects of DOM on MNMs, herein the occurrence of DOM on the environmental process change of MNMs such as dissolution, dispersion, aggregation, and surface transformation were summarized. We also reviewed the effects of MNMs on organisms and their mechanisms in the environment such as acute toxicity, oxidative stress, oxidative damage, growth inhibition, photosynthesis, reproductive toxicity, and malformation. The presence of DOM had the potential to reduce or enhance the toxicity of MNMs by altering the reactive oxygen species (ROS) generation, dissolution, stability, and electrostatic repulsion of MNMs. Furthermore, we summarized the factors that affected different toxicity including specific organisms, DOM concentration, DOM types, light conditions, detection time, and production methods of MNMs. However, the more detailed mechanism of interaction between DOM and MNMs needs further investigation.
Collapse
Affiliation(s)
- Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhangjia Wang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
2
|
Wang XB, Cui NH, Fang ZQ, Gao MJ, Cai D. Platelet bioenergetic profiling uncovers a metabolic pattern of high dependency on mitochondrial fatty acid oxidation in type 2 diabetic patients who developed in-stent restenosis. Redox Biol 2024; 72:103146. [PMID: 38579589 PMCID: PMC11000186 DOI: 10.1016/j.redox.2024.103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024] Open
Abstract
Although platelet bioenergetic dysfunction is evident early in the pathogenesis of diabetic macrovascular complications, the bioenergetic characteristics in type 2 diabetic patients who developed coronary in-stent restenosis (ISR) and their effects on platelet function remain unclear. Here, we performed platelet bioenergetic profiling to characterize the bioenergetic alterations in 28 type 2 diabetic patients with ISR compared with 28 type 2 diabetic patients without ISR (non-ISR) and 28 healthy individuals. Generally, platelets from type 2 diabetic patients with ISR exhibited a specific bioenergetic alteration characterized by high dependency on fatty acid (FA) oxidation, which subsequently induced complex III deficiency, causing decreased mitochondrial respiration, increased mitochondrial oxidant production, and low efficiency of mitochondrial ATP generation. This pattern of bioenergetic dysfunction showed close relationships with both α-granule and dense granule secretion as measured by surface P-selectin expression, ATP release, and profiles of granule cargo proteins in platelet releasates. Importantly, ex vivo reproduction of high dependency on FA oxidation by exposing non-ISR platelets to its agonist mimicked the bioenergetic dysfunction observed in ISR platelets and enhanced platelet secretion, whereas pharmaceutical inhibition of FA oxidation normalized the respiratory and redox states of ISR platelets and diminished platelet secretion. Further, causal mediation analyses identified a strong association between high dependency on FA oxidation and increased angiographical severity of ISR, which was significantly mediated by the status of platelet secretion. Our findings, for the first time, uncover a pattern of bioenergetic dysfunction in ISR and enhance current understanding of the mechanistic link of high dependency on FA oxidation to platelet abnormalities in the context of diabetes.
Collapse
Affiliation(s)
- Xue-Bin Wang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Ning-Hua Cui
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zi-Qi Fang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mi-Jie Gao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dan Cai
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
3
|
Gackowski M, Osmałek T, Froelich A, Otto F, Schneider R, Lulek J. Phototoxic or Photoprotective?-Advances and Limitations of Titanium (IV) Oxide in Dermal Formulations-A Review. Int J Mol Sci 2023; 24:ijms24098159. [PMID: 37175865 PMCID: PMC10179435 DOI: 10.3390/ijms24098159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The widespread role of titanium (IV) oxide (TiO2) in many industries makes this substance of broad scientific interest. TiO2 can act as both a photoprotector and photocatalyst, and the potential for its role in both applications increases when present in nanometer-sized crystals. Its sunlight-scattering properties are used extensively in sunscreens. Furthermore, attempts have been made to incorporate TiO2 into dermal formulations of photolabile drugs. However, the propensity to generate reactive oxygen species (ROS) rendering this material potentially cytotoxic limits its role. Therefore, modifications of TiO2 nanoparticles (e.g., its polymorphic form, size, shape, and surface modifications) are used in an effort to reduce its photocatalytic effects. This review provides an overview of the potential risks arising from and opportunities presented by the use of TiO2 in skin care formulations.
Collapse
Affiliation(s)
- Michał Gackowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Filip Otto
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | | | - Janina Lulek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| |
Collapse
|
4
|
Zhang S, Ke M, Li L, Chen K, Hicks A, Wu F, You J. UV-dependent freshwater effect factor of nanoscale titanium dioxide for future life cycle assessment application. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:578-585. [PMID: 36111587 DOI: 10.1002/ieam.4686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Environmental impacts of nanoscale titanium dioxide (TiO2 ) should be assessed throughout the lifetime of nanoparticles (NPs) to improve the state of knowledge of the overall sustainability. Life cycle assessment (LCA) has been previously recognized as a promising approach to systematically evaluating environmental impacts of NPs. As a result of their unique nanospecific properties, characterization factors (CF) were previously used for compensating the release and potential impacts of TiO2 NPs. However, because TiO2 NPs are known to generate reactive oxygen species and elicit toxicity to freshwater organisms, the lack of adequate UV-dependent effect factors (EFs) remains a major shortcoming when addressing their life cycle impacts. To complement the LCA of TiO2 -NPs-enabled products under their specific applications, we recapitulated the freshwater toxicity of TiO2 NPs and then modeled in USEtox to determine trophic level EF ranges under UV and non-UV exposure conditions. Results indicate that EFs derived for non-UV exposure were 52 (42.9-65) potentially affected fraction (PAF) m3 /kg, and combined toxicity data derived EFs were 70.1 (55.6-90.5) PAF m3 /kg. When considering only the UV-induced exposure condition, the modeled EF increased to 500 (333-712) PAF m3 /kg. Our work highlights that case-dependent EFs should be considered and applied to reflect more realistic ecological impacts and illustrate comprehensive life cycle environmental impacts for nanoenabled products. Integr Environ Assess Manag 2023;19:578-585. © 2022 SETAC.
Collapse
Affiliation(s)
- Shaoqiong Zhang
- Guangdong Key Laboratory of Environmental Pollutants and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Mingyan Ke
- Guangdong Key Laboratory of Environmental Pollutants and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Liang Li
- Guangdong Key Laboratory of Environmental Pollutants and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Keyan Chen
- Guangdong Key Laboratory of Environmental Pollutants and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Andrea Hicks
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Fan Wu
- Guangdong Key Laboratory of Environmental Pollutants and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollutants and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Gao MJ, Cui NH, Liu X, Wang XB. Inhibition of mitochondrial complex I leading to NAD +/NADH imbalance in type 2 diabetic patients who developed late stent thrombosis: Evidence from an integrative analysis of platelet bioenergetics and metabolomics. Redox Biol 2022; 57:102507. [PMID: 36244294 PMCID: PMC9579714 DOI: 10.1016/j.redox.2022.102507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a strong indicator of late stent thrombosis (LST). Platelet bioenergetic dysfunction, although critical to the pathogenesis of diabetic macrovascular complications, remains uncharacterized in T2DM patients who developed LST. Here, we explored the mechanistic link between the alterations in platelet bioenergetics and LST in the setting of T2DM. Platelet bioenergetics, metabolomics, and their interactomes were analyzed in a nested case-control study including 15 T2DM patients who developed LST and 15 matched T2DM patients who did not develop LST (non-LST). Overall, we identified a bioenergetic alteration in T2DM patients with LST characterized by an imbalanced NAD+/NADH redox state resulting from deficient mitochondrial complex I (NADH: ubiquinone oxidoreductase) activity, which led to reduced ATP-linked and maximal mitochondrial respiration, increased glycolytic flux, and platelet hyperactivation compared with non-LST patients. Congruently, platelets from LST patients exhibited downregulation of tricarboxylic acid cycle and NAD+ biosynthetic pathways as well as upregulation of the proximal glycolytic pathway, a metabolomic change that was primarily attributed to compromised mitochondrial respiration rather than increased glycolytic flux as evidenced by the integrative analysis of bioenergetics and metabolomics. Importantly, both bioenergetic and metabolomic aberrancies in LST platelets could be recapitulated ex vivo by exposing the non-LST platelets to a low dose of rotenone, a complex I inhibitor. In contrast, normalization of the NAD+/NADH redox state, either by increasing NAD+ biosynthesis or by inhibiting NAD+ consumption, was able to improve mitochondrial respiration, inhibit mitochondrial oxidant generation, and consequently attenuate platelet aggregation in both LST platelets and non-LST platelets pretreated with low-dose rotenone. These data, for the first time, delineate the specific patterns of bioenergetic and metabolomic alterations for T2DM patients who suffer from LST, and establish the deficiency of complex I-derived NAD+ as a potential pathogenic mechanism in platelet abnormalities.
Collapse
Affiliation(s)
- Mi-Jie Gao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ning-Hua Cui
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xia'nan Liu
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xue-Bin Wang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
6
|
Nederstigt TA, Peijnenburg WJ, Bleeker EA, Vijver MG. Applicability of nanomaterial-specific guidelines within long-term Daphnia magna toxicity assays: A case study on multigenerational effects of nTiO2 and nCeO2 exposure in the presence of artificial daylight. Regul Toxicol Pharmacol 2022; 131:105156. [DOI: 10.1016/j.yrtph.2022.105156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/29/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
|
7
|
Amiri MR, Alavi M, Taran M, Kahrizi D. Antibacterial, antifungal, antiviral, and photocatalytic activities of TiO 2 nanoparticles, nanocomposites, and bio-nanocomposites: Recent advances and challenges. J Public Health Res 2022. [DOI: 10.1177/22799036221104151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The applications of nanomaterials specifically metal and metal nanoparticles in various medical and industrial fields have been due to their unique properties compared to bulk materials. A combination of pharmacology and nanotechnology has helped the production of novel antimicrobial agents to control resistant microorganisms of bacteria and fungi. The properties of metal nanoparticles and metal oxides such as titanium dioxide (TiO2), zinc oxide (ZnO), silver (Ag), and copper (Cu) are well known as efficient antimicrobial agents. In particular, TiO2 nanoparticles have been considered as an attractive antimicrobial compound due to their photocatalytic intrinsic and their stable, non-toxic, inexpensive, and safe physicochemical properties. Therefore, in this review, recent advances and challenges of antibacterial, antifungal, antiviral, and photocatalytic activities of TiO2 nanoparticles, nanocomposites, and bio-nanocomposites are presented to help future studies.
Collapse
Affiliation(s)
| | - Mehran Alavi
- Biology Department, Faculty of Science, Razi University, Kermanshah, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
| | - Mojtaba Taran
- Biology Department, Faculty of Science, Razi University, Kermanshah, Iran
| | - Danial Kahrizi
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
| |
Collapse
|