1
|
Marzi D, Valente F, Luche S, Caissutti C, Sabia A, Capitani I, Capobianco G, Serranti S, Masi A, Panozzo A, Ricci A, Bolla PK, Vamerali T, Brunetti P, Visioli G. Phytoremediation of perfluoroalkyl and polyfluoroalkyl substances (PFAS): Insights on plant uptake, omics analysis, contaminant detection and biomass disposal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178323. [PMID: 39756293 DOI: 10.1016/j.scitotenv.2024.178323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
The unique properties of per- and polyfluoroalkyl substances (PFAS) have driven their pervasive use in different industrial applications, leading to substantial environmental pollution and raising critical concerns about the long-term impacts on ecosystem and human health. To tackle the global challenge of PFAS contamination, there is an urgent need for sustainable and efficient remediation strategies. Phytoremediation has emerged as a promising eco-friendly approach with the potential to mitigate the spread of these persistent contaminants. However, addressing this complex issue requires interdisciplinary cutting-edge research to develop comprehensive and scalable solutions for effective PFAS management. This review highlights recent advancements in the detection, quantification, and monitoring of PFAS uptake by plants, providing a detailed description of PFAS accumulation in several plant species. Besides, the physiological and molecular responses elicited by these pollutants are described. Leveraging omic technologies, including genomics, transcriptomics, and proteomics, provides unprecedented insights into the plant-PFAS interaction. Novel approaches based on artificial intelligence to predict this interaction and up to date disposal and valorization methods for PFAS-contaminated plant biomass, are discussed here. This review offers an interdisciplinary approach to explore what has been discovered so far about PFAS phytoremediation, covering the entire process from contaminant uptake to sustainable disposal, providing a roadmap for future research.
Collapse
Affiliation(s)
- Davide Marzi
- Research Institute on Terrestrial Ecosystems - National Research Council (IRET-CNR), 00015, Monterotondo Scalo, Rome, Italy; National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Francesco Valente
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, 35020 Legnaro, Padua, Italy
| | - Sophia Luche
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43100 Parma, Italy
| | - Cristina Caissutti
- Research Institute on Terrestrial Ecosystems - National Research Council (IRET-CNR), 00015, Monterotondo Scalo, Rome, Italy
| | - Andrea Sabia
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, 35020 Legnaro, Padua, Italy
| | - Ilaria Capitani
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Giuseppe Capobianco
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Silvia Serranti
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, 35020 Legnaro, Padua, Italy
| | - Anna Panozzo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, 35020 Legnaro, Padua, Italy
| | - Ada Ricci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43100 Parma, Italy
| | - Pranay Kumar Bolla
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, 35020 Legnaro, Padua, Italy
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, 35020 Legnaro, Padua, Italy
| | - Patrizia Brunetti
- Research Institute on Terrestrial Ecosystems - National Research Council (IRET-CNR), 00015, Monterotondo Scalo, Rome, Italy.
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43100 Parma, Italy
| |
Collapse
|
2
|
Morfin N, Goodwin PH, Guzman-Novoa E, Legge N, Longstaffe J. 1H NMR Profiling of Honey Bee Brains across Varying Ages and Seasons. INSECTS 2024; 15:578. [PMID: 39194783 DOI: 10.3390/insects15080578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Honey bees (Apis mellifera) provide a useful model for studying aging because of the differences in longevity between the relatively short-lived summer and long-lived winter bees, as well as bees lacking signs of cognitive senescence as they age. Bee brains were dissected from newly emerged, 14-day-, and 28-day- old bees in mid- and late summer, as well as brood nest bees in fall, winter, and spring, before, during, and after overwintering, respectively. Brains were examined with nuclear magnetic resonance (NMR) spectroscopy to analyze their metabolome. Nine variable importance in projection (VIP) variables were identified, primarily amino acids and choline derivatives. Differences in metabolite concentrations were found with different ages of summer bees, mostly between newly emerged and 14-day- old bees, such as a decrease in phenylalanine and an increase in β-alanine, but there were also changes in older adults, such as o-phosphocholine that declined in 28-day- old bees. Differences in brood nest bees were observed, including a decline in tryptophan and an increase in β-alanine. These may provide distinct metabolomic signatures with age and season. Such research holds promise for a better understanding of the complex interplays between bee physiology, development, and aging, which has implications for improving bee health and management.
Collapse
Affiliation(s)
- Nuria Morfin
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- The British Columbia Technology Transfer Program, British Columbia Honey Producers' Association, P.O. Box 5594, Station B, Victoria, BC V8R 6S4, Canada
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nicole Legge
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - James Longstaffe
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Bilhorn C, Brua RB, Izral NM, Yates AG. Evidence of interregional similarity in crayfish metabolomes at reference sites: Progress towards the metabolome as a biomonitoring tool. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120076. [PMID: 38211428 DOI: 10.1016/j.jenvman.2024.120076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
It has been proposed that biomonitoring may benefit from the use of metabolomics (the study of all small molecules in an organism) to detect sub-lethal organism stress through changes in the metabolite profile (i.e., the metabolome). However, to integrate the metabolome into biomonitoring programs the amount of natural variability among and within populations of indicator taxa must be established prior to generating a reference condition. This study determined variation in the metabolome among ecoregion and stream of origin in the northern crayfish (Faxonius virilis) and if that variation inhibited detection of stressor effects at sites exposed to human activities. We collected crayfish from seven minimally disturbed streams (i.e., reference streams), distributed across three level II ecoregions in central Canada and compared their metabolomes. We found ecoregion and stream origin were poor predictors of crayfish metabolomes. This result suggests crayfish metabolomes were similar, despite differing environmental conditions. Metabolomes of crayfish collected from three stream sites exposed to agricultural activity and municipal wastewater (i.e., test sites) were then compared to the crayfish metabolomes from the seven reference streams. Findings showed that crayfish metabolomes from test sites were strongly differentiated from those at all reference sites. The consistency in the northern crayfish metabolome at the studied reference streams indicates that a single reference condition may effectively detect impacts of human activities across the sampled ecoregions.
Collapse
Affiliation(s)
- Cora Bilhorn
- Department of Geography, Western University, London, Ontario, Canada
| | - Robert B Brua
- National Hydrologic Research Centre, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Natalie M Izral
- Department of Geography, Western University, London, Ontario, Canada
| | - Adam G Yates
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|