1
|
Freeman J, Salberg S, Noel M, Mychasiuk R. Examining the epigenetic transmission of risk for chronic pain associated with paternal post-traumatic stress disorder: a focus on veteran populations. Transl Psychiatry 2025; 15:42. [PMID: 39910041 PMCID: PMC11799465 DOI: 10.1038/s41398-025-03267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/13/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Chronic pain is a public health problem that significantly reduces quality of life. Although the aetiology is often unknown, recent evidence suggests that susceptibility can be transmitted intergenerationally, from parent to child. Post-traumatic stress disorder (PTSD) is a debilitating psychological disorder, often associated with chronic pain, that has high prevalence rates in military personnel and Veterans. Therefore, we aimed to characterise the epigenetic mechanisms by which paternal trauma, such as PTSD, is transmitted across generations to confer risk in the next generation, specifically focusing on Veterans where possible. Numerous overlapping neurological pathways are implicated in both PTSD and chronic pain; many of which are susceptible to epigenetic modification, such as DNA methylation, histone modifications, and RNA regulation. Hence, epigenetic changes related to pain perception, inflammation, and neurotransmission may influence an individual's predisposition to chronic pain conditions. We also examine the effects of PTSD on parenting behaviours and discuss how these variations could impact the development of chronic pain in children. We highlight the need for further research regarding the interactions between paternal trauma and epigenetic processes to ultimately generate effective prevention and therapeutic strategies for Veterans who have been affected by PTSD and chronic pain.
Collapse
Affiliation(s)
- James Freeman
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Melanie Noel
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Costa DL. Grandchildren's Longevity and Their Grandfathers' POW Trauma in the U.S. Civil War. Demography 2024; 61:337-361. [PMID: 38393987 PMCID: PMC11813633 DOI: 10.1215/00703370-11191183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
I document the transmission of a grandfather's net nutritional deprivation and psychosocial stress in young adulthood across multiple generations using the grandfather's ex-prisoner of war (ex-POW) status in the U.S. Civil War (1861-1865). Using a newly created dataset, I uncover an association between a grandfather's ex-POW status and the longevity after age 45 of his sons and male-line grandsons but not of his daughters, granddaughters, female-line grandsons, children-in-law, or grandchildren-in-law. Male-line grandsons lost roughly a year of life at age 45 (4% of remaining life expectancy) if descended from ex-POWs who suffered severe captivity conditions than if descended from non-POWs. If their grandfathers faced a less harsh captivity, male-line grandsons lost less than a year of life compared with those descended from non-POWs. I find that the grandfather's age at exposure and the grandson's education, as well as the son's and the grandson's poor late gestational conditions (proxied by season of birth), mediate this relationship. I rule out socioeconomic status, marriage and mortality selection, and cultural or psychological transmission from grandfathers to grandsons as explanations. I cannot rule out an epigenetic explanation.
Collapse
Affiliation(s)
- Dora L Costa
- Department of Economics, University of California, Los Angeles, Los Angeles, CA, USA
- National Bureau of Economic Research, Cambridge, MA, USA
| |
Collapse
|
3
|
Mazzeo F, Meccariello R. Cannabis and Paternal Epigenetic Inheritance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095663. [PMID: 37174181 PMCID: PMC10177768 DOI: 10.3390/ijerph20095663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Cannabis is the most widely used illicit drug in Western counties and its abuse is particularly high in male adolescents and young adults. Its main psychotropic component, the cannabinoid delta-9-tetrahydrocannabinol (Δ9-THC), interferes in the endogenous endocannabinoid system. This signaling system is involved in the control of many biological activities, including the formation of high-quality male gametes. Direct adverse effects of Δ9-THC in male reproduction are well known in both animal models and humans. Nevertheless, the possibility of long-term effects due to epigenetic mechanisms has recently been reported. In this review, we summarize the main advances in the field suggesting the need to pay attention to the possible long-term epigenetic risks for the reproductive health of cannabis users and the health of their offspring.
Collapse
Affiliation(s)
- Filomena Mazzeo
- Dipartimento di Scienze Economiche, Giuridiche, Informatiche e Motorie, Università di Napoli Parthenope, Nola, 80035 Naples, Italy
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples "Parthenope", Nola, 80133 Naples, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, 80133 Napoli, Italy
- Department of Movement Sciences and Wellbeing, University "Parthenope", 80133 Naples, Italy
| |
Collapse
|
4
|
Shi Q, Liu X, Fan X, Wang R, Qi K. Paternal dietary ratio of n-6: n-3 polyunsaturated fatty acids programs offspring leptin expression and gene imprinting in mice. Front Nutr 2022; 9:1043876. [PMID: 36618698 PMCID: PMC9816484 DOI: 10.3389/fnut.2022.1043876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Background This study determined the effects of the paternal dietary ratio of n-6: n-3 polyunsaturated fatty acids (PUFAs) on leptin expression in the offspring and associated gene imprinting in a mouse model. Methods Three- to four-week-old male C57BL/6J mice (F0) were fed an n-3 PUFA-deficient (n-3 D) diet, a diet with normal n-3 PUFA content (n-3 N; n-6: n-3 = 4.3:1), or a diet with a high n-3 PUFA content (n-3 H; n-6: n-3 = 1.5:1) for 8 weeks. Two subsequent generations were generated by mating F0 and F1 male mice with 10-week-old virgin female C57 BL/6J mice, to produce F1 and F2 offspring. Results Compared to the paternal n-3 D diet, paternal n-3 N and n-3 H diets reduced adipose mRNA expression of leptin (Lep) and its plasma concentrations in juvenile F1 male and female offspring, and adult F1 male and F2 female offspring, with upregulated Lep receptor mRNA expression in the hypothalamus. Meanwhile, paternal n-3 N and n-3 H diets altered the expression of the imprinted genes H19, Igf2, Igf2r, Plagl1, Cdkn1c, Kcnq1ot1, Peg3, and Grb10 in the adipose tissue of juvenile and adult F1 males, with almost no effects on F1 females, while more effects were observed in the adult F2 females than F2 males. Principal component analysis verified that Plagl1, Cdkn1c, and Kcnq1ot1 contributed the most to variation in adipose tissue expression in all offspring. Some of these genes (Plagl1, Cdkn1c, Kcnq1ot1, Peg3, and Grb10) were altered by the paternal n-3 N and n-3 H diets in the F1 and F2 generation testes as well. Furthermore, adipose Lep expression was positively correlated with expressions of H19, Igf2r, Plagl1, and Kcnq1ot1 in juvenile F1 males and females, negatively correlated with the Kcnq1ot1 expression in adult F1 males, and positively correlated with the Plagl1 expression in adult F2 females. Conclusion These data imply that paternal Plagl1, Cdkn1c, and Kcnq1ot1 might be part of the pathways involved in offspring leptin programming. Therefore, a lower ratio of n-6: n-3 PUFAs, with higher intake of n-3 PUFAs in paternal pre-conception, may help maintain the offspring's optimal leptin pattern in a sex-specific manner through multiple generations, and thereby, be beneficial for the offspring's long-term health.
Collapse
|
5
|
Lewis ME. Exploring adolescence as a key life history stage in bioarchaeology. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:519-534. [PMCID: PMC9825885 DOI: 10.1002/ajpa.24615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 04/16/2024]
Abstract
Adolescence is a unique period in the life history of an individual. It is characterized by a myriad of changes that bioarchaeologists are only just coming to appreciate, related to sexual maturation, linear growth, immunological transformation, and emotional and cognitive development. New methods allow us to measure this age of transition through the stages of the adolescent growth, as a proxy for the physical development associated with sexual maturation (puberty). This review outlines ways bioarchaeologists may draw on research developments from the fields of human biology, evolutionary theory and neurobiology to advance a more holistic approach to the study of adolescence in the past. It considers current theoretical and analytical approaches to highlight the research potential of this critical stage of life history. This synthesis integrates the most recent research in the medical sciences concerned with body and brain development, and outlines the biological processes involved with sexual and physical maturation of the adolescent. The goal of this review is to help inform potentially rewarding areas of research that bioarchaeologists can contribute to and draw from, as well as the challenges and limitations, theoretical and methodological questions, and ways in which we can develop the study of adolescence in the discipline going forward.
Collapse
Affiliation(s)
- Mary E. Lewis
- Department of ArchaeologyUniversity of ReadingReadingUK
| |
Collapse
|
6
|
Patlar B. On the Role of Seminal Fluid Protein and Nucleic Acid Content in Paternal Epigenetic Inheritance. Int J Mol Sci 2022; 23:ijms232314533. [PMID: 36498858 PMCID: PMC9739459 DOI: 10.3390/ijms232314533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The evidence supports the occurrence of environmentally-induced paternal epigenetic inheritance that shapes the offspring phenotype in the absence of direct or indirect paternal care and clearly demonstrates that sperm epigenetics is one of the major actors mediating these paternal effects. However, in most animals, while sperm makes up only a small portion of the seminal fluid, males also have a complex mixture of proteins, peptides, different types of small noncoding RNAs, and cell-free DNA fragments in their ejaculate. These seminal fluid contents (Sfcs) are in close contact with the reproductive cells, tissues, organs, and other molecules of both males and females during reproduction. Moreover, their production and use are adjusted in response to environmental conditions, making them potential markers of environmentally- and developmentally-induced paternal effects on the next generation(s). Although there is some intriguing evidence for Sfc-mediated paternal effects, the underlying molecular mechanisms remain poorly defined. In this review, the current evidence regarding the links between seminal fluid and environmental paternal effects and the potential pathways and mechanisms that seminal fluid may follow in mediating paternal epigenetic inheritance are discussed.
Collapse
Affiliation(s)
- Bahar Patlar
- Animal Ecology, Department of Zoology, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
7
|
Li X, Wang M, Liu S, Chen X, Qiao Y, Yang X, Yao J, Wu S. Paternal transgenerational nutritional epigenetic effect: A new insight into nutritional manipulation to reduce the use of antibiotics in animal feeding. ANIMAL NUTRITION 2022; 11:142-151. [PMID: 36204282 PMCID: PMC9527621 DOI: 10.1016/j.aninu.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
The use of antibiotics in animal feeding has been banned in many countries because of increasing concerns about the development of bacterial resistance to antibiotics and potential issues on food safety. Searching for antibiotic substitutes is essential. Applying transgenerational epigenetic technology to animal production could be an alternative. Some environmental changes can be transferred to memory-like responses in the offspring through epigenetic mechanisms without changing the DNA sequence. In this paper, we reviewed those nutrients and non-nutritional additives that have transgenerational epigenetic effects, including some amino acids, vitamins, and polysaccharides. The paternal transgenerational nutritional epigenetic regulation was particularly focused on mechanism of the substantial contribution of male stud animals to the animal industries. We illustrated the effects of paternal transgenerational epigenetics on the metabolism and immunity in farming animals and proposed strategies to modulate male breeding livestock or poultry.
Collapse
Affiliation(s)
- Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Medicine, Karolinska Institutet, Solna, Stockholm 17165, Sweden
| | - Mengya Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shimin Liu
- Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Qiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| |
Collapse
|
8
|
Levy SB, Leonard WR. The evolutionary significance of human brown adipose tissue: Integrating the timescales of adaptation. Evol Anthropol 2021; 31:75-91. [PMID: 34910348 DOI: 10.1002/evan.21930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/14/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
While human adaptability is regarded as a classical topic in anthropology, recent work provides new insight into metabolic adaptations to cold climates and the role of phenotypic plasticity in human evolution. A growing body of literature demonstrates that adults retain brown adipose tissue (BAT) which may play a role in non-shivering thermogenesis. In this narrative review, we apply the timescales of adaptation framework in order to explore the adaptive significance of human BAT. Human variation in BAT is shaped by multiple adaptive modes (i.e., allostasis, acclimatization, developmental adaptation, epigenetic inheritance, and genetic adaptation), and together the adaptive modes act as an integrated system. We hypothesize that plasticity in BAT facilitated the successful expansion of human populations into circumpolar regions, allowing for selection of genetic adaptations to cold climates to take place. Future research rooted in human energetics and biocultural perspectives is essential for understanding BAT's adaptive and health significance.
Collapse
Affiliation(s)
- Stephanie B Levy
- Department of Anthropology, CUNY Hunter College, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - William R Leonard
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
9
|
Merrill SM, Moore SR, Gladish N, Giesbrecht GF, Dewey D, Konwar C, MacIssac JL, Kobor MS, Letourneau NL. Paternal adverse childhood experiences: Associations with infant DNA methylation. Dev Psychobiol 2021; 63:e22174. [PMID: 34333774 DOI: 10.1002/dev.22174] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Adverse childhood experiences (ACEs), or cumulative childhood stress exposures, such as abuse, neglect, and household dysfunction, predict later health problems in both the exposed individuals and their offspring. One potential explanation suggests exposure to early adversity predicts epigenetic modification, especially DNA methylation (DNAm), linked to later health. Stress experienced preconception by mothers may associate with DNAm in the next generation. We hypothesized that fathers' exposure to ACEs also associates with their offspring DNAm, which, to our knowledge, has not been previously explored. An epigenome-wide association study (EWAS) of blood DNAm (n = 45) from 3-month-old infants was regressed onto fathers' retrospective ACEs at multiple Cytosine-phosphate-Guanosine (CpG) sites to discover associations. This accounted for infants' sex, age, ethnicity, cell type proportion, and genetic variability. Higher ACE scores associated with methylation values at eight CpGs. Post-hoc analysis found no contribution of paternal education, income, marital status, and parental postpartum depression, but did with paternal smoking and BMI along with infant sleep latency. These same CpGs also contributed to the association between paternal ACEs and offspring attention problems at 3 years. Collectively, these findings suggested there were biological associations with paternal early life adversity and offspring DNAm in infancy, potentially affecting offspring later childhood outcomes.
Collapse
Affiliation(s)
- Sarah M Merrill
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Sarah R Moore
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nicole Gladish
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Chaini Konwar
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Julia L MacIssac
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute Vancouver, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Program in Child and Brain Development, CIFAR, Toronto, Ontario, Canada
| | - Nicole L Letourneau
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.,Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Le Goff A, Allard P, Landecker H. Heritable changeability: Epimutation and the legacy of negative definition in epigenetic concepts. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2021; 86:35-46. [PMID: 33965662 DOI: 10.1016/j.shpsa.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Epigenetic concepts are fundamentally shaped by a legacy of negative definition, often understood by what they are not. Yet the function and implication of negative definition for scientific discourse has thus far received scant attention. Using the term epimutation as exemplar, we analyze the paradoxical like-but-unlike structure of a term that must simultaneously connect with but depart from genetic concepts. We assess the historical forces structuring the use of epimutation and like terms such as paramutation. This analysis highlights the positive characteristics defining epimutation: the regularity, oxymoronic temporality, and materiality of stable processes. Integrating historical work, ethnographic observation, and insights from philosophical practice-oriented conceptual analysis, we detail the distinctive epistemic goals the epimutation concept fulfils in medicine, plant biology and toxicology. Epimutation and allied epigenetic terms have succeeded by being mutation-like and recognizable, yet have failed to consolidate for exactly the same reason: they are tied simultaneously by likeness and opposition to nouns that describe things that are assumed to persist unchanged over space and time. Moreover, negative definition casts the genetic-epigenetic relationship as an either/or binary, overshadowing continuities and connections. This analysis is intended to assist practitioners and observers of genetics and epigenetics in recognizing and moving beyond the conceptual legacies of negative definition.
Collapse
Affiliation(s)
- Anne Le Goff
- The Institute for Society and Genetics & the EpiCenter, University of California, UCLA Institute for Society and Genetics, 621 Charles E. Young Dr., South Box 957221, 3360 LSB, Los Angeles, USA.
| | - Patrick Allard
- The Institute for Society and Genetics & the EpiCenter, University of California, UCLA Institute for Society and Genetics, 621 Charles E. Young Dr., South Box 957221, 3360 LSB, Los Angeles, USA.
| | - Hannah Landecker
- Department of Sociology, The Institute for Society and Genetics & the EpiCenter, University of California, UCLA Institute for Society and Genetics, 621 Charles E. Young Dr, South Box 957221, 3360 LSB, Los Angeles, USA.
| |
Collapse
|
11
|
McDade TW, Sancilio A. Beyond serosurveys: Human biology and the measurement of SARS-Cov-2 antibodies. Am J Hum Biol 2020; 32:e23483. [PMID: 32776378 PMCID: PMC7435561 DOI: 10.1002/ajhb.23483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Thomas W McDade
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA.,Institute for Policy Research, Northwestern University, Evanston, Illinois, USA
| | - Amelia Sancilio
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA.,Center for Health and the Social Sciences, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|